Navigating the Landscape of Dry Assembling Ordered Particle Structures: Can Solvents Become Obsolete?

Kai Sotthewes, Ignaas S M Jimidar
Author Information
  1. Kai Sotthewes: Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, P.O. Box 217, Enschede, 7500AE, The Netherlands. ORCID
  2. Ignaas S M Jimidar: Department of Chemical Engineering CHIS, Vrije Universiteit Brussel, Brussels, 1050, Belgium. ORCID

Abstract

A spur on miniaturized devices led scientists to unravel the fundamental aspects of micro- and nanoparticle assembly to engineer large structures. Primarily, attention is given to wet assembly methods, whereas assembly approaches in which solvents are avoided are scarce. The "dry assembly" strategies can overcome the intrinsic disadvantages that are associated with wet assembly, e.g., the lack of versatility and scalability. This review uniquely summarizes the recent progress made to create highly ordered particle arrays without using a wet environment. Before delving into these methods, the surface interactions (e.g., van der Waals, contact mechanics, capillary, and electrostatics) are elaborated, as a profound understanding and balancing these are a critical aspect of dry assembly. To manipulate these interactions, strategies involving different forces, e.g., mechanical-based, electrical-based, or laser-induced, sometimes in conjunction with pre-templated substrates, are employed to attain ordered colloidal structures. The utilization of the ordered structures obtained without solvents is accompanied by specific examples. Dry assembly methods can aid us in achieving more sustainable assembly processes. Overall, this Review aims to provide an easily accessible resource and inspire researchers, including novices, to broaden dry assembly horizons significantly and close the remaining knowledge gap in the physical phenomena involved in this area.

Keywords

References

  1. Nat Mater. 2022 May;21(5):540-546 [PMID: 35332292]
  2. J Phys Chem A. 2006 Feb 2;110(4):1382-8 [PMID: 16435798]
  3. Nanoscale. 2016 May 5;8(18):9688-94 [PMID: 27109248]
  4. Nano Lett. 2023 Mar 8;23(5):1888-1896 [PMID: 36802577]
  5. Soft Matter. 2016 Jan 21;12(3):717-28 [PMID: 26558940]
  6. Nano Lett. 2021 Sep 22;21(18):7769-7774 [PMID: 34460251]
  7. Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2301625120 [PMID: 37428934]
  8. J Colloid Interface Sci. 2024 Jun;663:458-466 [PMID: 38417297]
  9. Small. 2006 Apr;2(4):458-75 [PMID: 17193068]
  10. ACS Appl Electron Mater. 2022 Dec 27;4(12):6020-6028 [PMID: 36588623]
  11. J Am Chem Soc. 2004 Sep 1;126(34):10510-1 [PMID: 15327287]
  12. Soft Matter. 2017 Jan 4;13(2):394-401 [PMID: 27973634]
  13. Small. 2009 Jul;5(14):1600-30 [PMID: 19517482]
  14. Langmuir. 2022 Oct 18;38(41):12432-12440 [PMID: 36194826]
  15. Angew Chem Int Ed Engl. 2007;46(17):3087-90 [PMID: 17330910]
  16. Langmuir. 2017 Mar 14;33(10):2477-2484 [PMID: 28186771]
  17. Langmuir. 2014 Apr 29;30(16):4551-5 [PMID: 24735066]
  18. Science. 2002 Mar 29;295(5564):2418-21 [PMID: 11923529]
  19. Biomed Res Int. 2023 Sep 22;2023:4914082 [PMID: 37780487]
  20. J Biomech. 2014 Jun 3;47(8):1899-903 [PMID: 24767704]
  21. Phys Rev Lett. 2013 Jun 28;110(26):263201 [PMID: 23848872]
  22. Soft Matter. 2018 Oct 17;14(40):8119-8136 [PMID: 30283950]
  23. Angew Chem Int Ed Engl. 2024 Feb 26;63(9):e202313885 [PMID: 38059754]
  24. ACS Nano. 2018 Jan 23;12(1):441-447 [PMID: 29294283]
  25. Nat Mater. 2003 Apr;2(4):241-5 [PMID: 12690397]
  26. ACS Appl Mater Interfaces. 2024 Apr 10;16(14):17846-17856 [PMID: 38549366]
  27. Langmuir. 2014 Jun 17;30(23):6808-18 [PMID: 24849548]
  28. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062201 [PMID: 23848665]
  29. Adv Colloid Interface Sci. 2024 Feb;324:103089 [PMID: 38306849]
  30. Sci Technol Adv Mater. 2011 Dec 28;12(6):064704 [PMID: 27877454]
  31. Soft Matter. 2022 Nov 23;18(45):8535-8553 [PMID: 36342336]
  32. Langmuir. 2012 Feb 7;28(5):2558-66 [PMID: 22229845]
  33. Langmuir. 2005 Nov 22;21(24):10992-7 [PMID: 16285763]
  34. Nano Lett. 2013 Jun 12;13(6):2771-6 [PMID: 23627668]
  35. ACS Appl Mater Interfaces. 2024 Mar 6;16(9):12007-12017 [PMID: 38271190]
  36. Nanoscale. 2024 Apr 4;16(14):6778-6819 [PMID: 38502047]
  37. Langmuir. 2007 Mar 27;23(7):3654-65 [PMID: 17326669]
  38. ACS Appl Mater Interfaces. 2023 Apr 5;15(13):17070-17077 [PMID: 36961991]
  39. Adv Mater. 2024 Mar;36(13):e2310469 [PMID: 38193751]
  40. Adv Colloid Interface Sci. 2022 Jun;304:102642 [PMID: 35569386]
  41. Angew Chem Int Ed Engl. 2018 Nov 19;57(47):15379-15383 [PMID: 30209876]
  42. Phys Rev Lett. 1992 Jun 8;68(23):3432-3435 [PMID: 10045702]
  43. Small. 2023 Jul;19(27):e2300241 [PMID: 36932894]
  44. Sci Adv. 2022 Mar 11;8(10):eabm0078 [PMID: 35275728]
  45. J Am Chem Soc. 2005 Jun 1;127(21):7688-9 [PMID: 15913353]
  46. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt B):756-65 [PMID: 11088531]
  47. Sci Rep. 2017 Mar 06;7:43451 [PMID: 28262710]
  48. Langmuir. 2018 Oct 16;34(41):12335-12343 [PMID: 30244581]
  49. Science. 2010 Sep 3;329(5996):1188-91 [PMID: 20813950]
  50. Adv Colloid Interface Sci. 2017 Aug;246:217-274 [PMID: 28669390]
  51. J Am Chem Soc. 2009 Oct 14;131(40):14228-30 [PMID: 19775130]
  52. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 1):031302 [PMID: 11909041]
  53. ACS Appl Polym Mater. 2020 Aug 14;2(8):3039-3043 [PMID: 34124685]
  54. ACS Appl Mater Interfaces. 2023 Sep 6;15(35):42004-42014 [PMID: 37389550]
  55. Soft Matter. 2021 Mar 11;17(9):2354-2368 [PMID: 33514989]
  56. Langmuir. 2018 Dec 18;34(50):15211-15227 [PMID: 30472855]
  57. J R Soc Interface. 2019 Feb 28;16(151):20180738 [PMID: 30958203]
  58. Angew Chem Int Ed Engl. 2007;46(1-2):206-9 [PMID: 17136785]
  59. Biophys J. 1991 Dec;60(6):1438-44 [PMID: 19431815]
  60. Adv Colloid Interface Sci. 2024 Sep;331:103240 [PMID: 39024831]
  61. Nanoscale. 2023 Dec 7;15(47):19196-19202 [PMID: 37982209]
  62. ACS Nano. 2021 Jun 22;15(6):9299-9327 [PMID: 34028246]
  63. ACS Cent Sci. 2024 Mar 13;10(3):695-707 [PMID: 38559296]
  64. Ultramicroscopy. 2017 Jul;178:62-80 [PMID: 27217350]
  65. Sci Adv. 2021 May 26;7(22): [PMID: 34039611]
  66. Adv Mater. 2018 Jul;30(28):e1706654 [PMID: 29733481]
  67. ACS Appl Mater Interfaces. 2016 Oct 19;8(41):28149-28158 [PMID: 27669099]
  68. Nat Commun. 2020 Feb 26;11(1):1054 [PMID: 32103025]
  69. Nano Lett. 2014 Mar 12;14(3):1567-72 [PMID: 24479730]
  70. Science. 1995 Apr 14;268(5208):267-9 [PMID: 17814789]
  71. J Colloid Interface Sci. 1997 Aug 15;192(2):326-33 [PMID: 9367554]
  72. Adv Mater. 2014 Jul 16;26(27):4633-8 [PMID: 24711205]
  73. Soft Matter. 2022 May 18;18(19):3660-3677 [PMID: 35485633]
  74. Chem Soc Rev. 2017 Jun 19;46(12):3792-3807 [PMID: 28470250]
  75. Chem Soc Rev. 2021 May 24;50(10):5898-5951 [PMID: 34027954]
  76. Langmuir. 2024 Jan 9;40(1):677-686 [PMID: 38115196]
  77. J Chromatogr A. 2023 Jul 5;1700:464031 [PMID: 37148569]
  78. ACS Nano. 2021 Jan 26;15(1):258-287 [PMID: 33427457]
  79. ACS Omega. 2022 Oct 17;7(46):41828-41839 [PMID: 36440129]
  80. Chem Rev. 2022 Mar 9;122(5):4976-5067 [PMID: 34747588]
  81. Adv Funct Mater. 2010 Nov 9;20(21):3684-3694 [PMID: 33907543]
  82. ACS Nano. 2017 Dec 26;11(12):12723-12731 [PMID: 29112376]
  83. Adv Mater. 2016 Aug;28(30):6359-64 [PMID: 27168420]
  84. Nature. 1968 Sep 14;219(5159):1120-1 [PMID: 5675624]
  85. Small. 2016 Jun;12(23):3172-3180 [PMID: 27135209]
  86. Langmuir. 2020 Jun 23;36(24):6793-6800 [PMID: 32478522]
  87. Phys Chem Chem Phys. 2016 Feb 17;18(8):5905-9 [PMID: 26856872]
  88. Chimia (Aarau). 2012;66(4):214-7 [PMID: 22613153]
  89. Nat Nanotechnol. 2007 Sep;2(9):570-6 [PMID: 18654370]
  90. Langmuir. 2024 Apr 9;40(14):7249-7256 [PMID: 38556745]
  91. Sci Rep. 2015 Feb 09;5:8340 [PMID: 25661669]
  92. Nat Commun. 2016 May 13;7:11559 [PMID: 27174162]
  93. Nat Commun. 2014 Nov 26;5:5568 [PMID: 25424490]
  94. Nat Mater. 2007 Aug;6(8):557-62 [PMID: 17667968]
  95. Nature. 2003 Aug 14;424(6950):852-5 [PMID: 12917700]
  96. Chem Rev. 2015 Jul 8;115(13):6265-311 [PMID: 26098223]
  97. Soft Matter. 2023 Nov 22;19(45):8911-8918 [PMID: 37961836]
  98. Small. 2024 Dec;20(49):e2405410 [PMID: 39282807]
  99. ACS Appl Mater Interfaces. 2018 Mar 21;10(11):9225-9234 [PMID: 29469562]
  100. Langmuir. 2006 Feb 28;22(5):2171-84 [PMID: 16489804]
  101. Small. 2023 May;19(18):e2208069 [PMID: 36828795]
  102. Angew Chem Int Ed Engl. 2012 Mar 19;51(12):2855-8 [PMID: 22121089]
  103. Adv Mater. 2024 Jun;36(23):e2312748 [PMID: 38450572]
  104. Pflugers Arch. 2008 Nov;457(2):551-9 [PMID: 18481081]
  105. Langmuir. 2022 Jun 28;38(25):7709-7719 [PMID: 35616629]
  106. Acc Chem Res. 2023 Apr 4;56(7):740-751 [PMID: 36920352]
  107. Langmuir. 2013 Jul 23;29(29):9104-17 [PMID: 23802940]
  108. Acc Chem Res. 2023 Sep 5;56(17):2267-2277 [PMID: 37585560]
  109. Small. 2024 Feb;20(6):e2306394 [PMID: 37775949]
  110. Cell Motil Cytoskeleton. 2005 Oct;62(2):124-32 [PMID: 16145686]

Grants

  1. METH7/Vrije Universiteit Brussel
  2. OZR4311/Vrije Universiteit Brussel

Word Cloud

Created with Highcharts 10.0.0assemblystructureswetmethodsegordereddrysolventsstrategiescanwithoutsurfaceinteractionsforcesDryspurminiaturizeddevicesledscientistsunravelfundamentalaspectsmicro-nanoparticleengineerlargePrimarilyattentiongivenwhereasapproachesavoidedscarce"dryassembly"overcomeintrinsicdisadvantagesassociatedlackversatilityscalabilityreviewuniquelysummarizesrecentprogressmadecreatehighlyparticlearraysusingenvironmentdelvingvanderWaalscontactmechanicscapillaryelectrostaticselaboratedprofoundunderstandingbalancingcriticalaspectmanipulateinvolvingdifferentmechanical-basedelectrical-basedlaser-inducedsometimesconjunctionpre-templatedsubstratesemployedattaincolloidalutilizationobtainedaccompaniedspecificexamplesaidusachievingsustainableprocessesOverallReviewaimsprovideeasilyaccessibleresourceinspireresearchersincludingnovicesbroadenhorizonssignificantlycloseremainingknowledgegapphysicalphenomenainvolvedareaNavigatingLandscapeAssemblingOrderedParticleStructures:CanSolventsBecomeObsolete?colloidalparticlescrystalsmonolayersinteraction

Similar Articles

Cited By