Mechanisms of ferroptosis and glucagon-like peptide-1 receptor agonist in post-percutaneous coronary intervention restenosis.

Miao Wang, Liren Wang, Huanxin Sun, Hong Yuan, Yonghong Li
Author Information
  1. Miao Wang: Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
  2. Liren Wang: Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
  3. Huanxin Sun: Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
  4. Hong Yuan: Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
  5. Yonghong Li: Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China. liyonghong-66@163.com.

Abstract

Cardiovascular disease (CVD) claims millions of lives every year, with atherosclerotic cardiovascular disease (ASCVD) being the main cause. ASCVD treatment includes drug therapy, lifestyle intervention, and Percutaneous Coronary Intervention (PCI) all of which significantly enhance cardiovascular function and reduce mortality. However, hyperplasia can lead to vascular obstruction, worsen angina symptoms, or even cause heart disease, affecting patients' long-term prognosis. Therefore, finding effective ways to combat hyperplasia is crucial for cardiovascular therapy. In recent years, ferroptosis has gained attention as a new form of cell death closely associated with several diseases, including cardiovascular diseases. It involves complex metabolic processes critical for cellular homeostasis and normal function. Abnormal proliferation and phenotypic transformation of vascular smooth muscle cells (VSMC) are crucial mechanisms underlying cardiovascular disease development. Inhibiting ferroptosis in VSMC has the potential to significantly reduce neointima proliferation. Glucagon-like peptide-1 receptor agonist (GLP-1RA) constitutes a widely employed class of hypoglycemic agents with direct implications for the cardiovascular system, mitigating adverse cardiovascular events. Research indicates that the stimulation of GLP-1 holds promise as a therapeutic strategy in mitigating cardiovascular events such as restenosis. Hence, investigating the potential of GLP-1RA as a treatment option for cardiovascular ailments carries immense clinical significance.

Keywords

References

  1. Townsend N, Kazakiewicz D, LUCY WRIGHT F, et al (2022) Epidemiology of cardiovascular disease in Europe. Nat Rev Cardiol 19(2):133–43 [PMID: 34497402]
  2. Buchanan KD, Torguson R, Rogers T et al (2018) In-stent restenosis of drug-eluting stents compared with a matched group of patients with de novo coronary artery stenosis. Am J Cardiol 121(12):1512–1518 [PMID: 29627111]
  3. Ullrich H, Olschewski M, MüNZEL T et al (2021) Coronary in-stent restenosis: predictors and treatment. Deutsches Arzteblatt international 118(38):637–644 [PMID: 34379053]
  4. Giustino G, Colombo A, Camaj A et al (2022) Coronary in-stent restenosis: JACC state-of-the-art review. J Am Coll Cardiol 80(4):348–372 [PMID: 35863852]
  5. Alfonso F, Byrne RA, Rivero F et al (2014) Current treatment of in-stent restenosis. J Am Coll Cardiol 63(24):2659–2673 [PMID: 24632282]
  6. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282 [PMID: 33495651]
  7. Stockwell BR, FriedmannAngeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–85 [PMID: 28985560]
  8. Li J, Cao F, Yin HL et al (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88 [PMID: 32015325]
  9. Fang X, Ardehali H, Min J et al (2023) The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 20(1):7–23 [PMID: 35788564]
  10. Zhang S, Bei Y, Huang Y et al (2022) Induction of ferroptosis promotes vascular smooth muscle cell phenotypic switching and aggravates neointimal hyperplasia in mice. Mol Med 28(1):121 [PMID: 36192693]
  11. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet (London, England) 368(9548):1696–1705 [PMID: 17098089]
  12. Drucker DJ (2018) Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab 27(4):740–756 [PMID: 29617641]
  13. Jorsal T, Rungby J, Knop FK et al (2016) GLP-1 and amylin in the treatment of obesity. Curr DiabRep 16(1):1
  14. Giugliano D, Scappaticcio L, Longo M et al (2021) GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol 20(1):189 [PMID: 34526024]
  15. Ussher JR, Drucker DJ (2023) Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol 20(7):463–474 [PMID: 36977782]
  16. Ding HX, Dong NX, Zhou CX et al (2022) Liraglutide alleviates vascular injury in diabetic rabbits with lower limb vascular stenosis through regulation of RCAN1. Eur Rev Med Pharmacol Sci 26(11):3978–3988 [PMID: 35731069]
  17. Shi L, Ji Y, Jiang X et al (2015) Liraglutide attenuates high glucose-induced abnormal cell migration, proliferation, and apoptosis of vascular smooth muscle cells by activating the GLP-1 receptor, and inhibiting ERK1/2 and PI3K/Akt signaling pathways. Cardiovasc Diabetol 14:18 [PMID: 25855361]
  18. McLean BA, Wong CK, Kaur KD et al (2021) Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide. JCI insight. https://doi.org/10.1172/jci.insight.153732 [DOI: 10.1172/jci.insight.153732]
  19. Khalid M, Alkaabi J, Khan MAB et al (2021) Insulin signal transduction perturbations in insulin resistance. Int J Mol Sci 22(16):8590 [PMID: 34445300]
  20. Stergiopoulos K, Boden WE, Hartigan P et al (2014) Percutaneous coronary intervention outcomes in patients with stable obstructive coronary artery disease and myocardial ischemia: a collaborative meta-analysis of contemporary randomized clinical trials. JAMA Intern Med 174(2):232–240 [PMID: 24296791]
  21. Dangas GD, Claessen BE, Caixeta A et al (2010) In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol 56(23):1897–1907 [PMID: 21109112]
  22. Grüntzig AR, Senning A, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. New Engl J Med 301(2):61–8 [PMID: 449946]
  23. Fanelli C, Aronoff R (1990) Restenosis following coronary angioplasty. Am Heart J 119(2 Pt 1):357–368 [PMID: 2405612]
  24. Daniel WC, Pirwitz MJ, Willard JE et al (1996) Incidence and treatment of elastic recoil occurring in the 15 minutes following successful percutaneous transluminal coronary angioplasty. Am J Cardiol 78(3):253–259 [PMID: 8759800]
  25. Gori T (2021) Vascular wall reactions to coronary stents-clinical implications for stent failure. Life (Basel, Switzerland) 11(1):63 [PMID: 33477361]
  26. Sigwart U, Puel J, Mirkovitch V et al (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316(12):701–706 [PMID: 2950322]
  27. Byrne RA, Joner M, Kastrati A (2015) Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. Eur Heart J 36(47):3320–3331 [PMID: 26417060]
  28. Agostoni P, Valgimigli M, Biondi-Zoccai GG et al (2006) Clinical effectiveness of bare-metal stenting compared with balloon angioplasty in total coronary occlusions: insights from a systematic overview of randomized trials in light of the drug-eluting stent era. Am Heart J 151(3):682–689 [PMID: 16504632]
  29. Stefanini GG, HolmesJR DR (2013) Drug-eluting coronary-artery stents. New Engl J Med 368(3):254–65 [PMID: 23323902]
  30. Shlofmitz E, Iantorno M, Waksman R (2019) Restenosis of drug-eluting stents: a new classification system based on disease mechanism to guide treatment and state-of-the-art review. Circ Cardiovasc Interv 12(8):e007023 [PMID: 31345066]
  31. Kibos A, Campeanu A, Tintoiu I (2007) Pathophysiology of coronary artery in-stent restenosis. Acute Card Care 9(2):111–119 [PMID: 17573586]
  32. Yahagi K, Kolodgie FD, Otsuka F et al (2016) Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol 13(2):79–98 [PMID: 26503410]
  33. Virmani R, Farb A (1999) Pathology of in-stent restenosis. Curr Opin Lipidol 10(6):499–506 [PMID: 10680043]
  34. Buccheri D, Piraino D, Andolina G et al (2016) Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment. J Thorac Dis 8(10):E1150–E1162 [PMID: 27867580]
  35. Raines EW (2004) PDGF and cardiovascular disease. Cytokine Growth Factor Rev 15(4):237–254 [PMID: 15207815]
  36. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3):767–801 [PMID: 15269336]
  37. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118(4):692–702 [PMID: 26892967]
  38. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75(3):487–517 [PMID: 7624392]
  39. Owens GK (1996) Role of mechanical strain in regulation of differentiation of vascular smooth muscle cells. Circ Res 79(5):1054–1055 [PMID: 8888699]
  40. Wu B, Xu C, Ding HS et al (2022) Galangin inhibits neointima formation induced by vascular injury via regulating the PI3K/AKT/mTOR pathway. Food Funct 13(23):12077–12092 [PMID: 36367287]
  41. Alim I, Caulfield JT, Chen Y et al (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(5):1262–79.e25 [PMID: 31056284]
  42. Shi Y, Liu J, Zhang R et al (2023) Targeting endothelial ENO1 (alpha-enolase) -PI3K-Akt-mTOR axis alleviates hypoxic pulmonary hypertension. Hypertension 80(5):1035–1047 [PMID: 37075135]
  43. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79(4):1283–1316 [PMID: 10508235]
  44. Derynck R, Zhang YE (2003) Smad-dependent and smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584 [PMID: 14534577]
  45. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700 [PMID: 12809600]
  46. Takano M, Yamamoto M, Xie Y et al (2007) Serial long-term evaluation of neointimal stent coverage and thrombus after sirolimus-eluting stent implantation by use of coronary angioscopy. Heart (British Cardiac Society) 93(12):1533–1536 [PMID: 18003687]
  47. Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18(5):677–685 [PMID: 9598824]
  48. Nakazawa G, Vorpahl M, Finn AV et al (2009) One step forward and two steps back with drug-eluting-stents: from preventing restenosis to causing late thrombosis and nouveau atherosclerosis. JACC Cardiovasc Imaging 2(5):625–628 [PMID: 19442951]
  49. Kalra A, Rehman H, Khera S et al (2017) New-generation coronary stents: current data and future directions. Curr Atheroscler Rep 19(3):14 [PMID: 28220461]
  50. Otsuka F, Byrne RA, Yahagi K et al (2015) Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. Eur Heart J 36(32):2147–2159 [PMID: 25994755]
  51. Joner M, Koppara T, Byrne RA et al (2018) Neoatherosclerosis in patients with coronary stent thrombosis: findings From optical coherence tomography imaging (a report of the prestige consortium). JACC Cardiovasc Interv 11(14):1340–1350 [PMID: 30025727]
  52. Taniwaki M, Radu MD, Zaugg S et al (2016) Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography. Circulation 133(7):650–660 [PMID: 26762519]
  53. Nakazawa G, Otsuka F, Nakano M et al (2011) The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol 57(11):1314–1322 [PMID: 21376502]
  54. Siontis GC, Stefanini GG, Mavridis D et al (2015) Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. Lancet (London, England) 386(9994):655–664 [PMID: 26334160]
  55. Condello F, Spaccarotella C, Sorrentino S et al (2023) Stent thrombosis and restenosis with contemporary drug-eluting stents: predictors and current evidence. J Clin Med 12(3):1238 [PMID: 36769886]
  56. Yan L, Xu MT, Yuan L et al (2016) Prevalence of dyslipidemia and its control in type 2 diabetes: A multicenter study in endocrinology clinics of China. J Clin Lipidol 10(1):150–160 [PMID: 26892132]
  57. Esposito K, Nappo F, Marfella R et al (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106(16):2067–2072 [PMID: 12379575]
  58. Carson JL, Scholz PM, Chen AY et al (2002) Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J Am Coll Cardiol 40(3):418–423 [PMID: 12142105]
  59. Park HJ, Seo SM, Shin WS et al (2011) Soluble receptor for advanced glycation end products is associated with in-stent restenosis in patients with type 2 diabetes with drug-eluting coronary stents. Coron Artery Dis 22(1):12–17 [PMID: 21197704]
  60. Jonas M, Edelman ER, Groothuis A et al (2005) Vascular neointimal formation and signaling pathway activation in response to stent injury in insulin-resistant and diabetic animals. Circ Res 97(7):725–733 [PMID: 16123336]
  61. Aronson D, Edelman ER (2010) Revascularization for coronary artery disease in diabetes mellitus: angioplasty, stents and coronary artery bypass grafting. Rev Endocr Metab Disord 11(1):75–86 [PMID: 20221852]
  62. van Belle E, Abolmaali K, Bauters C et al (1999) Restenosis, late vessel occlusion and left ventricular function six months after balloon angioplasty in diabetic patients. J Am Coll Cardiol 34(2):476–485 [PMID: 10440162]
  63. Lim S, Lee GY, Park HS et al (2017) Attenuation of carotid neointimal formation after direct delivery of a recombinant adenovirus expressing glucagon-like peptide-1 in diabetic rats. Cardiovasc Res 113(2):183–194 [PMID: 27702762]
  64. Piccini S, Favacchio G, Panico C et al (2023) Time-dependent effect of GLP-1 receptor agonists on cardiovascular benefits: a real-world study. Cardiovasc Diabetol 22(1):69 [PMID: 36966321]
  65. Patti AM, Nikolic D, Magan-Fernandez A et al (2019) Exenatide once-weekly improves metabolic parameters, endothelial dysfunction and carotid intima-media thickness in patients with type-2 diabetes: an 8-month prospective study. Diabetes Res Clin Pract 149:163–169 [PMID: 30759365]
  66. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072 [PMID: 22632970]
  67. Doll S, Proneth B, Tyurina YY et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98 [PMID: 27842070]
  68. Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22(7):381–396 [PMID: 35338310]
  69. Xie LH, Fefelova N, Pamarthi SH et al (2022) Molecular mechanisms of ferroptosis and relevance to cardiovascular disease. Cells 11(17):2726 [PMID: 36078133]
  70. Zhang Y, Xin L, Xiang M et al (2022) The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother 145:112423 [PMID: 34800783]
  71. Xie BS, Wang YQ, Lin Y et al (2019) Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther 25(4):465–475 [PMID: 30264934]
  72. Conrad M, Pratt DA (2019) The chemical basis of ferroptosis. Nat Chem Biol 15(12):1137–1147 [PMID: 31740834]
  73. Yuan H, Li X, Zhang X et al (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478(3):1338–1343 [PMID: 27565726]
  74. Kagan VE, Mao G, Qu F et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90 [PMID: 27842066]
  75. Ayala A, MUñoz MF, ARGüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal [J]. Oxid Med Cell Longev 2014:360438 [PMID: 24999379]
  76. Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23(1):21–48 [PMID: 8471159]
  77. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482(3):419–425 [PMID: 28212725]
  78. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176 [PMID: 26653790]
  79. Su LJ, Zhang JH, Gomez H et al (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:5080843 [PMID: 31737171]
  80. Stoyanovsky DA, Tyurina YY, Shrivastava I et al (2019) Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? Free Radic Biol Med 133:153–161 [PMID: 30217775]
  81. Pisoschi AM, Pop A, Iordache F et al (2021) Oxidative stress mitigation by antioxidants - an overview on their chemistry and influences on health status. Eur J Med Chem 209:112891 [PMID: 33032084]
  82. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease [J]. Int J Biochem Cell Biol 39(1):44–84 [PMID: 16978905]
  83. Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 152:175–185 [PMID: 32165281]
  84. Mao L, Zhao T, Song Y et al (2020) The emerging role of ferroptosis in non-cancer liver diseases: hype or increasing hope? Cell Death Dis 11(7):518 [PMID: 32647111]
  85. Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107 [PMID: 30692038]
  86. He F, Ru X, Wen T (2020) NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 21(13):4777 [PMID: 32640524]
  87. Silva B, Faustino P (2015) An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta 1852(7):1347–1359 [PMID: 25843914]
  88. Bogdan AR, Miyazawa M, Hashimoto K et al (2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 41(3):274–286 [PMID: 26725301]
  89. Galaris D, Barbouti A, Pantopoulos K (2019) Iron homeostasis and oxidative stress: an intimate relationship. Biochim Biophys Acta Mol Cell Res 1866(12):118535 [PMID: 31446062]
  90. Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82–83:969–974 [PMID: 8597169]
  91. Andrews NC, Schmidt PJ (2007) Iron homeostasis. Annu Rev Physiol 69:69–85 [PMID: 17014365]
  92. Zhang DL, Ghosh MC, Rouault TA (2014) The physiological functions of iron regulatory proteins in iron homeostasis—an update. Front Pharmacol 5:124 [PMID: 24982634]
  93. Muckenthaler MU, Rivella S, Hentze MW et al (2017) A red carpet for iron metabolism. Cell 168(3):344–361 [PMID: 28129536]
  94. Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14(8):551–564 [PMID: 23820773]
  95. Mancias JD, Wang X, Gygi SP et al (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509(7498):105–109 [PMID: 24695223]
  96. Gao M, Monian P, Pan Q et al (2016) Ferroptosis is an autophagic cell death process. Cell Res 26(9):1021–1032 [PMID: 27514700]
  97. Brown CW, Amante JJ, Chhoy P et al (2019) Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell 51(5):575–86.e4 [PMID: 31735663]
  98. Paul BT, Manz DH, Torti FM et al (2017) Mitochondria and iron: current questions. Expert Rev Hematol 10(1):65–79 [PMID: 27911100]
  99. Angeli JPF, Shah R, Pratt DA et al (2017) Ferroptosis inhibition: mechanisms and opportunities. Trends Pharmacol Sci 38(5):489–498 [PMID: 28363764]
  100. Diaz-Vivancos P, de Simone A, Kiddle G et al (2015) Glutathione–linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164 [PMID: 26546102]
  101. Kobayashi S, Hamashima S, Homma T et al (2018) Cystine/glutamate transporter, system x(c)(-), is involved in nitric oxide production in mouse peritoneal macrophages. Nitric Oxide 78:32–40 [PMID: 29792932]
  102. Lewerenz J, Hewett SJ, Huang Y et al (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18(5):522–555 [PMID: 22667998]
  103. Berndt C, Lillig CH (2017) Glutathione, glutaredoxins, and iron. Antioxid Redox Signal 27(15):1235–1251 [PMID: 28537421]
  104. Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30(1–2):42–59 [PMID: 18601945]
  105. Martínez Y, Li X, Liu G et al (2017) The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 49(12):2091–8 [PMID: 28929442]
  106. Baker DA, Xi ZX, Shen H et al (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22(20):9134–9141 [PMID: 12388621]
  107. Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261(5):2256–2263 [PMID: 2868011]
  108. Sato H, Shiiya A, Kimata M et al (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280(45):37423–37429 [PMID: 16144837]
  109. Jiang L, Kon N, Li T et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62 [PMID: 25799988]
  110. Zhang Y, Shi J, Liu X et al (2018) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20(10):1181–1192 [PMID: 30202049]
  111. Yang WS, Sriramaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331 [PMID: 24439385]
  112. Li FJ, Long HZ, Zhou ZW et al (2022) System X(c) (-)/GSH/GPX4 axis: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol 13:910292 [PMID: 36105219]
  113. Mou Y, Wang J, Wu J et al (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12(1):34 [PMID: 30925886]
  114. Dixon SJ, Pratt DA (2023) Ferroptosis: a flexible constellation of related biochemical mechanisms. Mol Cell 83(7):1030–1042 [PMID: 36977413]
  115. Jeon KH, Jeong YH, Chae IH et al (2023) Implication of diabetic status on platelet reactivity and clinical outcomes after drug-eluting stent implantation: results from the PTRG-DES consortium. Cardiovasc Diabetol 22(1):245 [PMID: 37679760]
  116. Gargiulo G, Windecker S, da Costa BR et al (2016) Short term versus long term dual antiplatelet therapy after implantation of drug eluting stent in patients with or without diabetes: systematic review and meta-analysis of individual participant data from randomised trials. BMJ 355:i5483 [PMID: 27811064]
  117. Wilson S, Mone P, Kansakar U et al (2022) Diabetes and restenosis. Cardiovasc Diabetol 21(1):23 [PMID: 35164744]
  118. Xia J, Li Q, Liu Y et al (2020) A GLP-1 Analog Liraglutide reduces intimal hyperplasia after coronary stent implantation via regulation of glycemic variability and NLRP3 inflammasome/IL-10 signaling in diabetic swine. Front Pharmacol 11:372 [PMID: 32273846]
  119. Orskov C, Rabenhøj L, Wettergren A et al (1994) Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 43(4):535–9 [PMID: 8138058]
  120. Oh YS, Jun HS (2017) Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling. Int J Mol Sci 19:26 [PMID: 29271910]
  121. Yamagishi S, Matsui T (2011) Pleiotropic effects of glucagon-like peptide-1 (GLP-1)-based therapies on vascular complications in diabetes. Curr Pharm Des 17(38):4379–4385 [PMID: 22204436]
  122. Lee YS, Jun HS (2014) Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 63(1):9–19 [PMID: 24140094]
  123. Meier JJ (2012) GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8(12):728–742 [PMID: 22945360]
  124. Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3(3):153–165 [PMID: 16517403]
  125. Garber AJ (2011) Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability [J]. Diabetes Care 34:S279-84 [PMID: 21525469]
  126. Pedrosa MR, Franco DR, Gieremek HW et al (2022) GLP-1 agonist to treat obesity and prevent cardiovascular disease: what have we achieved so far? Curr Atheroscler Rep 24(11):867–884 [PMID: 36044100]
  127. Nauck MA, Meier JJ, Cavender MA et al (2017) Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 136(9):849–870 [PMID: 28847797]
  128. Helmstädter J, Keppeler K, küster L, et al (2022) Glucagon-like peptide-1 (GLP-1) receptor agonists and their cardiovascular benefits-The role of the GLP-1 receptor. British J Pharmacol 179(4):659–76 [DOI: 10.1111/bph.15462]
  129. Bruen R, Curley S, Kajani S et al (2017) Liraglutide dictates macrophage phenotype in apolipoprotein E null mice during early atherosclerosis. Cardiovasc Diabetol 16(1):143 [PMID: 29110715]
  130. Heuvelman VD, van Raalte DH, Smits MM (2020) Cardiovascular effects of glucagon-like peptide 1 receptor agonists: from mechanistic studies in humans to clinical outcomes. Cardiovasc Res 116(5):916–930 [PMID: 31825468]
  131. Ding HX, Dong NX, Zhou CX et al (2022) Liraglutide attenuates restenosis after vascular injury in rabbits with diabetes via the TGF-β/Smad3 signaling pathway. Altern Ther Health Med 28(6):22–28 [PMID: 35751893]
  132. Zhao L, Zhu W, Zhang X et al (2017) Effect of diabetes mellitus on long-term outcomes after repeat drug-eluting stent implantation for in-stent restenosis. BMC Cardiovasc Disord 17(1):16 [PMID: 28061808]
  133. Fox CS, Golden SH, Anderson C et al (2015) Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American heart association and the American diabetes association. Diabetes Care 38(9):1777–1803 [PMID: 26246459]
  134. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88–98 [PMID: 29219149]
  135. Ruiz HH, Ramasamy R, Schmidt AM (2020) Advanced glycation end products: building on the concept of the “common soil” in metabolic disease. Endocrinology. https://doi.org/10.1210/endocr/bqz006 [DOI: 10.1210/endocr/bqz006]
  136. Sarwar N, Gao P, Seshasai SR et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet (London, England) 375(9733):2215–2222 [PMID: 20609967]
  137. Wong ND, Budoff MJ, Ferdinand K et al (2022) Atherosclerotic cardiovascular disease risk assessment: an American society for preventive cardiology clinical practice statement. Am J Prevent Cardiol 10:100335 [DOI: 10.1016/j.ajpc.2022.100335]
  138. Zhu J, Yu X, Zheng Y et al (2020) Association of glucose-lowering medications with cardiovascular outcomes: an umbrella review and evidence map. Lancet Diabetes Endocrinol 8(3):192–205 [PMID: 32006518]
  139. Correction, to (2024) 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes: developed by the task force on the management of cardiovascular disease in patients with diabetes of the European society of cardiology (ESC). Eur Heart J 45(7):518 [DOI: 10.1093/eurheartj/ehad857]
  140. Volpe CMO, Villar-Delfino PH, dos Anjos PMF et al (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9(2):119 [PMID: 29371661]
  141. Poetsch F, Henze LA, Estepa M et al (2020) Role of SGK1 in the osteogenic transdifferentiation and calcification of vascular smooth muscle cells promoted by hyperglycemic conditions. Int J Mol Sci 21(19):7207 [PMID: 33003561]
  142. Fei Y, Sun L, Yuan C et al (2018) CFTR ameliorates high glucose-induced oxidative stress and inflammation by mediating the NF-κB and MAPK signaling pathways in endothelial cells. Int J Mol Med 41(6):3501–3508 [PMID: 29512777]
  143. Sforza A, Vigorelli V, Rurali E et al (2022) Liraglutide preserves CD34(+) stem cells from dysfunction Induced by high glucose exposure [J]. Cardiovasc Diabetol 21(1):51 [PMID: 35397526]
  144. Li Q, Tuo X, Li B et al (2020) Semaglutide attenuates excessive exercise-induced myocardial injury through inhibiting oxidative stress and inflammation in rats. Life Sci 250:117531 [PMID: 32151691]
  145. Zheng W, Pan H, Wei L et al (2019) Dulaglutide mitigates inflammatory response in fibroblast-like synoviocytes. Int Immunopharmacol 74:105649 [PMID: 31185450]
  146. Ojima A, Ishibashi Y, Matsui T et al (2013) Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am J Pathol 182(1):132–141 [PMID: 23159951]
  147. Helmstädter J, Frenis K, Filippou K et al (2020) Endothelial GLP-1 (Glucagon-Like Peptide-1) receptor mediates cardiovascular protection by liraglutide In mice with experimental arterial hypertension. Arterioscler Thromb Vascular Biol 40(1):145–58 [DOI: 10.1161/atv.0000615456.97862.30]
  148. Dimmeler S, Fleming I, Fisslthaler B et al (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736):601–605 [PMID: 10376603]
  149. Muniyappa R, Montagnani M, Koh KK et al (2007) Cardiovascular actions of insulin. Endocr Rev 28(5):463–491 [PMID: 17525361]
  150. Yaribeygi H, Sathyapalan T, Sahebkar A (2019) Molecular mechanisms by which GLP-1 RA and DPP-4i induce insulin sensitivity. Life Sci 234:116776 [PMID: 31425698]
  151. Otsuka F, Finn AV, Yazdani SK et al (2012) The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol 9(8):439–453 [PMID: 22614618]
  152. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362(6423):801–809 [PMID: 8479518]
  153. Clowes AW, Reidy MA, Clowes MM (1983) Mechanisms of stenosis after arterial injury. Lab Invest 49(2):208–215 [PMID: 6876748]
  154. Nyström T, Gutniak MK, Zhang Q et al (2004) Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. American journal f physiology Endocrinology and metabolism 287(6):E1209-15 [DOI: 10.1152/ajpendo.00237.2004]
  155. Gaspari T, Liu H, Welungoda I et al (2011) A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model. Diab Vasc Dis Res 8(2):117–124 [PMID: 21562063]
  156. Dong Z, Chai W, Wang W et al (2013) Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment. Am J Physiol Endocrinol Metab 304(2):E222–E228 [PMID: 23193054]
  157. Lee YS, Kim WS, Kim KH et al (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55(8):2256–2264 [PMID: 16873688]
  158. Jojima T, Uchida K, Akimoto K et al (2017) Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice. Atherosclerosis 261:44–51 [PMID: 28445811]
  159. Di B, Li HW, Li W et al (2019) Liraglutide inhibited AGEs induced coronary smooth muscle cell phenotypic transition through inhibiting the NF-κB signal pathway. Peptides 112:125–132 [PMID: 30513352]
  160. Liu Z, Zhang M, Zhou T et al (2018) Exendin-4 promotes the vascular smooth muscle cell re-differentiation through AMPK/SIRT1/FOXO3a signaling pathways. Atherosclerosis 276:58–66 [PMID: 30036742]
  161. Lyu J, Imachi H, Fukunaga K et al (2022) Exendin-4 Increases Scavenger Receptor Class BI Expression via Activation of AMPK/FoxO1 in Human Vascular Endothelial Cells. Curr Issues Mol Biol 44(11):5474–5484 [PMID: 36354682]
  162. Burmeister MA, Brown JD, Ayala JE et al (2017) The glucagon-like peptide-1 receptor in the ventromedial hypothalamus reduces short-term food intake in male mice by regulating nutrient sensor activity. Am J Physiol Endocrinol Metab 313(6):E651–E662 [PMID: 28811293]
  163. An JR, Su JN, Sun GY et al (2022) Liraglutide Alleviates Cognitive Deficit in db/db Mice: Involvement in Oxidative Stress, Iron Overload, and Ferroptosis. Neurochem Res 47(2):279–294 [PMID: 34480710]
  164. Carling D (2017) AMPK signalling in health and disease. Curr Opin Cell Biol 45:31–37 [PMID: 28232179]
  165. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135 [PMID: 28974774]
  166. Lee H, Zandkarimi F, Zhang Y et al (2020) Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 22(2):225–234 [PMID: 32029897]
  167. Zhong S, Chen W, Wang B et al (2023) Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis. Redox Biol 63:102760 [PMID: 37267686]
  168. Wang X, Chen X, Zhou W et al (2022) Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B 12(2):708–722 [PMID: 35256941]
  169. Huang Y, Wu H, Hu Y et al (2022) Puerarin attenuates oxidative stress and ferroptosis via AMPK/PGC1α/Nrf2 pathway after subarachnoid hemorrhage in rats. Antioxidants (Basel) 11(7):1259 [PMID: 35883750]
  170. Shen R, Qin S, Lv Y et al (2024) GLP-1 receptor agonist attenuates tubular cell ferroptosis in diabetes via enhancing AMPK-fatty acid metabolism pathway through macropinocytosis. Biochim Biophys Acta 1870(4):167060 [DOI: 10.1016/j.bbadis.2024.167060]
  171. Chen WR, Chen YD, Tian F et al (2016) Effects of Liraglutide on Reperfusion Injury in Patients With ST-Segment-Elevation Myocardial Infarction. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.116.005146 [DOI: 10.1161/CIRCIMAGING.116.005146]
  172. Clarke SJ, Giblett JP, Yang LL et al (2018) GLP-1 Is a Coronary Artery Vasodilator in Humans [J]. J Am Heart Assoc 7(22):e010321 [PMID: 30571482]
  173. Ogbu IR, Ngwudike C, Lal K et al (2021) Role of glucagon-like peptide-1 agonist in patients undergoing percutaneous coronary intervention or coronary artery bypass grafting: a meta-analysis. Am Heart J plus : Cardiol Res Pract 11:100063
  174. Chen WR, Hu SY, Chen YD et al (2015) Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J 170(5):845–854 [PMID: 26542491]
  175. Woo JS, Kim W, Ha SJ et al (2013) Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol 33(9):2252–2260 [PMID: 23868944]

Grants

  1. 2022-WJZD182/Project Guided by Qingdao Medical and Health Research
  2. LKJGG2021W076/Research Program of Science and Technology of Shandong Geriatric Association
  3. QDFY+X2021051/Project of Clinical Medicine + X in Affiliated Hospital of Qingdao University

Word Cloud

Created with Highcharts 10.0.0cardiovasculardiseaseASCVDferroptosisGLP-1RAcausetreatmenttherapyinterventionPCIsignificantlyfunctionreducehyperplasiavascularcrucialdiseasesproliferationVSMCpotentialpeptide-1receptoragonistmitigatingeventsrestenosisCardiovascularCVDclaimsmillionsliveseveryyearatheroscleroticmainincludesdruglifestylePercutaneousCoronaryInterventionenhancemortalityHowevercanleadobstructionworsenanginasymptomsevenheartaffectingpatients'long-termprognosisThereforefindingeffectivewayscombatrecentyearsgainedattentionnewformcelldeathcloselyassociatedseveralincludinginvolvescomplexmetabolicprocessescriticalcellularhomeostasisnormalAbnormalphenotypictransformationsmoothmusclecellsmechanismsunderlyingdevelopmentInhibitingneointimaGlucagon-likeconstituteswidelyemployedclasshypoglycemicagentsdirectimplicationssystemadverseResearchindicatesstimulationGLP-1holdspromisetherapeuticstrategyHenceinvestigatingoptionailmentscarriesimmenseclinicalsignificanceMechanismsglucagon-likepost-percutaneouscoronaryAtheroscleroticFerroptosisRestenosis

Similar Articles

Cited By