Advances in nucleic acid delivery strategies for diabetic wound therapy.

Soniya Sarthi, Harish Bhardwaj, Rajendra Kumar Jangde
Author Information
  1. Soniya Sarthi: University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India.
  2. Harish Bhardwaj: University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India.
  3. Rajendra Kumar Jangde: University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India.

Abstract

In recent years, the prevalence of diabetic wounds has significantly increased, posing a substantial medical challenge due to their propensity for infection and delayed healing. These wounds not only increase mortality rates but also lead to amputations and severe mobility issues. To address this, advancements in bioactive molecules such as genes, growth factors, proteins, peptides, stem cells, and exosomes into targeted gene therapies have emerged as a preferred strategy among researchers. Additionally, the integration of photothermal therapy (PTT), nucleic acid, and gene therapy, along with 3D printing technology and the layer-by-layer (LBL) self-assembly approach, shows promise in diabetic wound treatment. Effective delivery of small interfering RNA (siRNA) relies on gene vectors. This review provides an in-depth exploration of the pathophysiological characteristics observed in diabetic wounds, encompassing diminished angiogenesis, heightened levels of reactive oxygen species, and impaired immune function. It further examines advancements in nucleic acid delivery, targeted gene therapy, advanced drug delivery systems, layer-by-layer (LBL) techniques, negative pressure wound therapy (NPWT), 3D printing, hyperbaric oxygen therapy, and ongoing clinical trials. Through the integration of recent research insights, this review presents innovative strategies aimed at augmenting the multifaceted management of diabetic wounds, thus paving the way for enhanced therapeutic outcomes in the future.

Keywords

References

  1. Acta Biomater. 2020 Jan 15;102:298-314 [PMID: 31751808]
  2. Front Physiol. 2024 May 07;15:1346971 [PMID: 38827992]
  3. Adv Healthc Mater. 2018 Sep;7(17):e1800432 [PMID: 30004192]
  4. ACS Appl Mater Interfaces. 2018 May 16;10(19):16315-16326 [PMID: 29687718]
  5. Neurochem Int. 2010 Oct;57(3):198-205 [PMID: 20546814]
  6. Tissue Eng Part A. 2024 Apr 12;: [PMID: 38534964]
  7. J Biol Chem. 2003 Mar 28;278(13):10963-72 [PMID: 12519789]
  8. ACS Appl Mater Interfaces. 2018 Dec 12;10(49):41892-41901 [PMID: 30424595]
  9. Life (Basel). 2021 Jul 07;11(7): [PMID: 34357037]
  10. Mol Pharm. 2020 May 4;17(5):1723-1733 [PMID: 32233440]
  11. Theranostics. 2019 Jan 1;9(1):65-76 [PMID: 30662554]
  12. Bioact Mater. 2020 May 08;5(3):667-679 [PMID: 32420517]
  13. Stem Cell Res Ther. 2020 Aug 12;11(1):350 [PMID: 32787917]
  14. Biomaterials. 2024 Dec;311:122700 [PMID: 38996671]
  15. Craniomaxillofac Trauma Reconstr. 2024 Mar;17(1):61-73 [PMID: 38371215]
  16. APL Bioeng. 2021 Jul 09;5(3):031503 [PMID: 34286170]
  17. Adv Healthc Mater. 2016 Jul;5(14):1786-99 [PMID: 27253638]
  18. Curr Drug Targets. 2023;24(16):1239-1259 [PMID: 37957907]
  19. Adv Healthc Mater. 2016 Apr 20;5(8):907-18 [PMID: 26891197]
  20. Circ Res. 2013 Nov 8;113(11):1231-41 [PMID: 24047927]
  21. Biomaterials. 2016 Sep;102:107-19 [PMID: 27328431]
  22. Chemosphere. 2020 Aug;252:126581 [PMID: 32222517]
  23. J Control Release. 2016 Sep 28;238:114-122 [PMID: 27473766]
  24. J Mater Chem B. 2024 Jun 27;12(25):6033-6062 [PMID: 38887828]
  25. Sci Rep. 2023 Nov 15;13(1):19961 [PMID: 37968314]
  26. Stem Cells Transl Med. 2017 Mar;6(3):736-747 [PMID: 28297576]
  27. Int J Pharm. 2017 Dec 20;534(1-2):190-194 [PMID: 29038062]
  28. Int J Mol Sci. 2021 Oct 26;22(21): [PMID: 34768984]
  29. Adv Wound Care (New Rochelle). 2023 Dec;12(12):657-670 [PMID: 37756368]
  30. J Control Release. 2015 Jun 10;207:18-30 [PMID: 25836593]
  31. ACS Biomater Sci Eng. 2019 Aug 12;5(8):4054-4066 [PMID: 33448807]
  32. J Mater Chem B. 2020 Apr 8;8(14):2754-2767 [PMID: 32196041]
  33. Biomed Pharmacother. 2020 Sep;129:110498 [PMID: 32768973]
  34. ACS Biomater Sci Eng. 2018 May 14;4(5):1661-1668 [PMID: 33445322]
  35. Arterioscler Thromb Vasc Biol. 2024 Jan;44(1):143-155 [PMID: 37942611]
  36. Eur J Pharm Biopharm. 2024 Aug;201:114371 [PMID: 38885910]
  37. Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2696-E2705 [PMID: 29432194]
  38. Biomacromolecules. 2020 Sep 14;21(9):3795-3806 [PMID: 32786521]
  39. Int J Mol Sci. 2024 Mar 29;25(7): [PMID: 38612660]
  40. Int J Biol Macromol. 2020 Jul 1;154:855-865 [PMID: 32198034]
  41. Stem Cells. 2012 May;30(5):804-10 [PMID: 22415904]
  42. Curr Pharm Biotechnol. 2024;25(10):1230-1244 [PMID: 37539932]
  43. ACS Cent Sci. 2019 Mar 27;5(3):477-485 [PMID: 30937375]
  44. Int J Pharm. 2020 Sep 25;587:119677 [PMID: 32717280]
  45. ACS Nano. 2019 Oct 22;13(10):11686-11697 [PMID: 31490650]
  46. ACS Biomater Sci Eng. 2019 Jul 8;5(7):3537-3548 [PMID: 33405736]
  47. Carbohydr Polym. 2016 Aug 1;146:445-54 [PMID: 27112895]
  48. Adv Mater. 2016 Mar 2;28(9):1809-17 [PMID: 26695434]
  49. Sci Rep. 2016 Jul 25;6:30326 [PMID: 27453476]
  50. Int J Mol Sci. 2024 Jun 19;25(12): [PMID: 38928459]
  51. ACS Nano. 2019 Sep 24;13(9):10279-10293 [PMID: 31483606]
  52. Biomater Adv. 2023 Mar;146:213290 [PMID: 36682203]
  53. Front Endocrinol (Lausanne). 2024 Apr 12;15:1343255 [PMID: 38681772]
  54. Front Bioeng Biotechnol. 2024 Jan 12;12:1292171 [PMID: 38282892]
  55. ACS Biomater Sci Eng. 2018;4(4):1386-1396 [PMID: 29687080]
  56. ACS Omega. 2020 Sep 18;5(38):24239-24246 [PMID: 33015440]
  57. FASEB J. 2019 Apr;33(4):5599-5614 [PMID: 30668922]
  58. Curr Pharm Des. 2019;25(15):1682-1693 [PMID: 31269879]
  59. J Mater Chem B. 2016 Jun 7;4(21):3770-3781 [PMID: 32263315]
  60. Mater Sci Eng C Mater Biol Appl. 2020 Dec;117:111273 [PMID: 32919637]
  61. Biomacromolecules. 2020 Feb 10;21(2):294-304 [PMID: 31771325]
  62. Mater Sci Eng C Mater Biol Appl. 2020 Dec;117:111299 [PMID: 32919660]
  63. J Colloid Interface Sci. 2018 May 1;517:251-264 [PMID: 29428812]
  64. Acta Biomater. 2014 Oct;10(10):4156-66 [PMID: 24814882]
  65. J Appl Polym Sci. 2020 Jul 5;137(25): [PMID: 33384460]
  66. ACS Appl Mater Interfaces. 2017 May 24;9(20):17417-17426 [PMID: 28447455]
  67. J Mater Chem B. 2015 Sep 7;3(33):6798-6804 [PMID: 32262473]
  68. Adv Healthc Mater. 2017 Jan;6(2): [PMID: 27869355]
  69. Int J Mol Sci. 2023 Dec 29;25(1): [PMID: 38203631]
  70. ACS Appl Mater Interfaces. 2017 Mar 8;9(9):7950-7963 [PMID: 28211272]
  71. Trends Biotechnol. 2017 Aug;35(8):770-784 [PMID: 28645529]
  72. ACS Appl Bio Mater. 2020 Aug 17;3(8):5383-5394 [PMID: 35021712]
  73. Biomaterials. 2017 Jul;132:1-15 [PMID: 28391065]
  74. Acta Biomater. 2016 Jul 1;38:59-68 [PMID: 27109762]
  75. ACS Biomater Sci Eng. 2016 Jul 11;2(7):1180-1189 [PMID: 33465876]
  76. Biosensors (Basel). 2024 Jul 25;14(8): [PMID: 39194589]
  77. Biomaterials. 2018 Jun;168:24-37 [PMID: 29609091]
  78. J Mol Cell Cardiol. 2016 Feb;91:151-9 [PMID: 26776318]
  79. J Control Release. 2016 Oct 28;240:77-92 [PMID: 26518723]
  80. Int J Mol Sci. 2023 Nov 13;24(22): [PMID: 38003439]
  81. Front Bioeng Biotechnol. 2023 May 10;11:1168330 [PMID: 37234478]
  82. Phlebology. 2021 Mar;36(2):100-113 [PMID: 32819205]
  83. Nanoscale. 2018 May 24;10(20):9547-9560 [PMID: 29745944]
  84. Carbohydr Polym. 2020 Nov 1;247:116682 [PMID: 32829810]
  85. Int J Biol Macromol. 2020 Oct 15;161:1040-1054 [PMID: 32544577]
  86. Adv Wound Care (New Rochelle). 2016 Feb 1;5(2):79-88 [PMID: 26862465]
  87. ACS Infect Dis. 2020 Oct 9;6(10):2688-2697 [PMID: 32902952]
  88. Int J Biol Macromol. 2020 Oct 15;161:325-335 [PMID: 32485249]
  89. Trends Cardiovasc Med. 2019 Apr;29(3):131-137 [PMID: 30143275]
  90. ACS Appl Bio Mater. 2024 Mar 18;7(3):1947-1957 [PMID: 38394042]
  91. Expert Rev Pharmacoecon Outcomes Res. 2019 Jun;19(3):279-286 [PMID: 30625012]
  92. Cells. 2020 Jan 28;9(2): [PMID: 32012802]
  93. Biomaterials. 2017 Oct;141:149-160 [PMID: 28688286]
  94. Sci Transl Med. 2021 Mar 17;13(585): [PMID: 33731435]
  95. Int J Mol Sci. 2024 Jul 02;25(13): [PMID: 39000381]
  96. J Invest Dermatol. 2004 Oct;123(4):791-8 [PMID: 15373787]
  97. J Mater Chem B. 2023 Aug 9;11(31):7300-7320 [PMID: 37427691]
  98. J Immunol. 2017 Sep 1;199(5):1543-1552 [PMID: 28827386]
  99. ACS Pharmacol Transl Sci. 2020 Sep 01;4(1):107-117 [PMID: 33615165]
  100. Curr Protein Pept Sci. 2024;25(3):200-205 [PMID: 37909438]
  101. Acta Biomater. 2018 Apr 1;70:140-153 [PMID: 29454159]
  102. J Mater Chem B. 2024 Apr 3;12(14):3356-3375 [PMID: 38505950]
  103. Bioengineering (Basel). 2022 Jul 18;9(7): [PMID: 35877375]
  104. Molecules. 2021 Sep 09;26(18): [PMID: 34576949]
  105. Front Physiol. 2017 Nov 07;8:904 [PMID: 29163228]
  106. Polymers (Basel). 2023 Feb 27;15(5): [PMID: 36904445]
  107. Diagnostics (Basel). 2024 Jan 09;14(2): [PMID: 38248028]
  108. Int J Biol Macromol. 2018 Dec;120(Pt A):385-393 [PMID: 30110603]
  109. Biochem Pharmacol. 2023 Sep;215:115736 [PMID: 37549795]
  110. Acta Biomater. 2020 May;108:153-167 [PMID: 32268240]
  111. Vet Parasitol. 2024 Aug;330:110237 [PMID: 38878462]
  112. Pharmaceutics. 2019 Nov 04;11(11): [PMID: 31689932]
  113. J Control Release. 2015 Dec 10;219:396-405 [PMID: 26241750]
  114. Front Bioeng Biotechnol. 2023 Mar 23;11:1129187 [PMID: 37034267]
  115. Wound Repair Regen. 2011 Mar-Apr;19(2):205-13 [PMID: 21362088]
  116. J Mater Chem B. 2017 Sep 21;5(35):7285-7296 [PMID: 32264178]
  117. J Biomed Mater Res B Appl Biomater. 2017 Jan;105(1):81-90 [PMID: 26426455]
  118. Int J Mol Sci. 2024 Feb 23;25(5): [PMID: 38473869]
  119. Int J Biol Macromol. 2018 Aug;115:1211-1217 [PMID: 29730004]
  120. Am J Physiol Heart Circ Physiol. 2023 Aug 1;325(2):H398-H413 [PMID: 37389953]
  121. Antibiotics (Basel). 2023 Jan 09;12(1): [PMID: 36671326]
  122. Wound Repair Regen. 2024 May-Jun;32(3):314-322 [PMID: 37822053]
  123. Wound Repair Regen. 2018 Jul;26(4):311-323 [PMID: 30118158]
  124. Genes (Basel). 2024 Jan 19;15(1): [PMID: 38275607]
  125. Int J Mol Sci. 2019 Oct 18;20(20): [PMID: 31635374]
  126. Molecules. 2017 Jul 27;22(8): [PMID: 28749427]
  127. J Cell Biochem. 2019 Oct;120(10):17194-17207 [PMID: 31104319]
  128. Biomaterials. 2018 Jul;169:61-71 [PMID: 29631168]
  129. J Mater Chem B. 2023 Jul 12;11(27):6201-6224 [PMID: 37306212]
  130. Int J Mol Sci. 2024 Jul 14;25(14): [PMID: 39062956]
  131. Molecules. 2024 Apr 29;29(9): [PMID: 38731540]
  132. J Pers Med. 2021 Sep 07;11(9): [PMID: 34575668]
  133. ACS Appl Mater Interfaces. 2017 Nov 1;9(43):37563-37574 [PMID: 28994281]
  134. Acta Biomater. 2019 Dec;100:191-201 [PMID: 31586729]
  135. Am J Respir Crit Care Med. 2005 Dec 15;172(12):1487-90 [PMID: 16151040]
  136. Mol Ther Nucleic Acids. 2022 Aug 17;29:871-899 [PMID: 36159590]
  137. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):94-9 [PMID: 25535360]
  138. Can J Diabetes. 2022 Jun;46(4):330-336.e7 [PMID: 35527204]
  139. Int J Mol Sci. 2024 May 31;25(11): [PMID: 38892235]
  140. J Multidiscip Healthc. 2023 Jun 23;16:1763-1777 [PMID: 37383529]
  141. ACS Cent Sci. 2017 Mar 22;3(3):163-175 [PMID: 28386594]
  142. Life Sci. 2020 Sep 15;257:118091 [PMID: 32668325]
  143. Biomater Sci. 2018 Jan 30;6(2):398-406 [PMID: 29337327]
  144. Front Microbiol. 2022 Feb 22;12:768739 [PMID: 35273578]
  145. Diabetes Metab Res Rev. 2024 Mar;40(3):e3747 [PMID: 37997627]
  146. Medicina (Kaunas). 2021 Oct 08;57(10): [PMID: 34684109]
  147. J Invest Dermatol. 2023 Jun;143(6):893-912 [PMID: 37211377]
  148. Expert Rev Vaccines. 2023 Jan-Dec;22(1):315-326 [PMID: 36945780]
  149. Front Med (Lausanne). 2023 Aug 24;10:1207538 [PMID: 37692787]
  150. Adv Mater. 2016 Jul;28(27):5542-52 [PMID: 26678528]

Word Cloud

Created with Highcharts 10.0.0therapydiabeticgenewoundsacidwounddeliverynucleicrecenthealingadvancementstargetedtherapiesintegration3Dprintinglayer-by-layerLBLreviewoxygenstrategiesyearsprevalencesignificantlyincreasedposingsubstantialmedicalchallengeduepropensityinfectiondelayedincreasemortalityratesalsoleadamputationsseveremobilityissuesaddressbioactivemoleculesgenesgrowthfactorsproteinspeptidesstemcellsexosomesemergedpreferredstrategyamongresearchersAdditionallyphotothermalPTTalongtechnologyself-assemblyapproachshowspromisetreatmentEffectivesmallinterferingRNAsiRNAreliesvectorsprovidesin-depthexplorationpathophysiologicalcharacteristicsobservedencompassingdiminishedangiogenesisheightenedlevelsreactivespeciesimpairedimmunefunctionexaminesadvanceddrugsystemstechniquesnegativepressureNPWThyperbaricongoingclinicaltrialsresearchinsightspresentsinnovativeaimedaugmentingmultifacetedmanagementthuspavingwayenhancedtherapeuticoutcomesfutureAdvancesDiabeticNanotechnologyNucleicTargeted

Similar Articles

Cited By