Synthetic directed evolution for targeted engineering of plant traits.

Ahad Moussa Kababji, Haroon Butt, Magdy Mahfouz
Author Information
  1. Ahad Moussa Kababji: Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
  2. Haroon Butt: Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
  3. Magdy Mahfouz: Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Abstract

Improving crop traits requires genetic diversity, which allows breeders to select advantageous alleles of key genes. In species or loci that lack sufficient genetic diversity, synthetic directed evolution (SDE) can supplement natural variation, thus expanding the possibilities for trait engineering. In this review, we explore recent advances and applications of SDE for crop improvement, highlighting potential targets (coding sequences and -regulatory elements) and computational tools to enhance crop resilience and performance across diverse environments. Recent advancements in SDE approaches have streamlined the generation of variants and the selection processes; by leveraging these advanced technologies and principles, we can minimize concerns about host fitness and unintended effects, thus opening promising avenues for effectively enhancing crop traits.

Keywords

References

  1. Theor Appl Genet. 2009 Aug;119(4):577-85 [PMID: 19495723]
  2. BMC Bioinformatics. 2003 Jun 23;4:25 [PMID: 12820902]
  3. Annu Rev Plant Biol. 2023 May 22;74:111-137 [PMID: 36608347]
  4. Metab Eng. 2018 Jul;48:288-296 [PMID: 29981865]
  5. ACS Synth Biol. 2015 May 15;4(5):604-14 [PMID: 25303315]
  6. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10747-51 [PMID: 7938023]
  7. Nucleic Acids Res. 2024 Jan 5;52(D1):D1569-D1578 [PMID: 37897338]
  8. Plant Cell. 2015 Sep;27(9):2415-26 [PMID: 26373455]
  9. Nat Rev Genet. 2011 Dec 06;13(1):59-69 [PMID: 22143240]
  10. Curr Opin Plant Biol. 2021 Oct;63:102058 [PMID: 34098218]
  11. Plant Mol Biol. 2007 May;64(1-2):219-24 [PMID: 17334827]
  12. Plant Biotechnol J. 2021 Jan;19(1):5-7 [PMID: 32535959]
  13. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5618-22 [PMID: 8516309]
  14. Nucleic Acids Res. 2017 Oct 13;45(18):10800-10810 [PMID: 28985357]
  15. Nat Biotechnol. 2019 Jul;37(7):730-743 [PMID: 31209374]
  16. Planta. 2022 Apr 23;255(5):109 [PMID: 35460444]
  17. Pest Manag Sci. 2012 Aug;68(8):1164-70 [PMID: 22431132]
  18. Nat Commun. 2024 Apr 25;15(1):3488 [PMID: 38664394]
  19. Plant Biotechnol J. 2020 Nov;18(11):2164-2166 [PMID: 32339389]
  20. Nucleic Acids Res. 2020 Jan 8;48(D1):D1104-D1113 [PMID: 31701126]
  21. Plant Cell. 2020 Jul;32(7):2120-2131 [PMID: 32409318]
  22. Plant Biotechnol J. 2020 Sep;18(9):1845-1847 [PMID: 31985873]
  23. Proc Natl Acad Sci U S A. 1967 Jul;58(1):217-24 [PMID: 5231602]
  24. Curr Opin Plant Biol. 2015 Oct;27:207-16 [PMID: 26342908]
  25. Plant J. 2007 Oct;52(1):157-66 [PMID: 17883686]
  26. Cell. 2018 Dec 13;175(7):1946-1957.e13 [PMID: 30415839]
  27. iScience. 2018 Aug 31;6:222-231 [PMID: 30240613]
  28. Bioinformatics. 2005 May 15;21(10):2568-9 [PMID: 15731212]
  29. Nature. 2018 Aug;560(7717):248-252 [PMID: 30069054]
  30. Nat Methods. 2021 Apr;18(4):346-357 [PMID: 33828274]
  31. PLoS One. 2021 Sep 9;16(9):e0255470 [PMID: 34499670]
  32. Plant Physiol Biochem. 2023 Dec;205:108094 [PMID: 37995578]
  33. Nat Plants. 2016 Sep 12;2:16139 [PMID: 27618611]
  34. Science. 1988 Jul 1;241(4861):53-7 [PMID: 3388019]
  35. Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8852-8858 [PMID: 30979809]
  36. Nat Methods. 2016 Dec;13(12):1036-1042 [PMID: 27798611]
  37. Cell. 2019 Jul 25;178(3):748-761.e17 [PMID: 31280962]
  38. Plant Commun. 2023 Jan 9;4(1):100455 [PMID: 36171722]
  39. Data Brief. 2018 Aug 30;20:1325-1331 [PMID: 30246111]
  40. Nat Chem Biol. 2014 Mar;10(3):175-7 [PMID: 24487693]
  41. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):75-80 [PMID: 11134506]
  42. Plant Biotechnol J. 2020 Dec;18(12):2504-2519 [PMID: 32516520]
  43. Nat Biotechnol. 2020 Jul;38(7):875-882 [PMID: 31932727]
  44. Nature. 1994 Aug 4;370(6488):389-91 [PMID: 8047147]
  45. Plant Physiol. 2017 Jan;173(1):887-906 [PMID: 27881726]
  46. Nat Biotechnol. 2020 Feb;38(2):165-168 [PMID: 31844291]
  47. Pest Manag Sci. 2019 May;75(5):1242-1251 [PMID: 30556254]
  48. Front Plant Sci. 2018 Feb 06;9:97 [PMID: 29472938]
  49. Plant Biotechnol J. 2023 Jul;21(7):1305-1307 [PMID: 36965149]
  50. Planta. 2023 Feb 16;257(3):57 [PMID: 36795295]
  51. Trends Biotechnol. 2001 Jan;19(1):13-4 [PMID: 11146097]
  52. Nat Biotechnol. 2018 Oct;36(9):894-898 [PMID: 30080209]
  53. Synth Biol (Oxf). 2021 Sep 02;6(1):ysab025 [PMID: 34522785]
  54. Nucleic Acids Res. 1998 Jan 1;26(1):358-9 [PMID: 9399873]
  55. ACS Omega. 2020 Oct 16;5(42):26957-26966 [PMID: 33134656]
  56. Proc Natl Acad Sci U S A. 2021 Jan 12;118(2): [PMID: 33443212]
  57. Appl Microbiol Biotechnol. 2014 May;98(9):3877-87 [PMID: 24595425]
  58. Biotechnology (N Y). 1991 Nov;9(11):1073-7 [PMID: 1367624]
  59. New Phytol. 2021 Oct;232(2):928-940 [PMID: 34270808]
  60. Nat Plants. 2019 Dec;5(12):1237-1249 [PMID: 31740773]
  61. Annu Rev Biophys. 2017 May 22;46:505-529 [PMID: 28375731]
  62. Nat Rev Genet. 2015 Jul;16(7):379-94 [PMID: 26055155]
  63. Front Genet. 2022 Apr 27;13:849961 [PMID: 35571035]
  64. Nat Biotechnol. 2018 Oct 01;: [PMID: 30272679]
  65. Cell. 2017 Oct 5;171(2):470-480.e8 [PMID: 28919077]
  66. Plant J. 2019 Jan;97(1):8-18 [PMID: 30368955]
  67. Nat Commun. 2018 Feb 5;9(1):502 [PMID: 29402884]
  68. Nat Methods. 2016 Dec;13(12):1029-1035 [PMID: 27723754]
  69. Pestic Biochem Physiol. 2020 Mar;164:65-72 [PMID: 32284138]
  70. Genomics Proteomics Bioinformatics. 2019 Apr;17(2):140-153 [PMID: 31201999]
  71. Nat Protoc. 2020 Dec;15(12):4101-4127 [PMID: 33199872]
  72. Mol Plant. 2020 Apr 6;13(4):565-572 [PMID: 32001363]
  73. Nat Biotechnol. 2000 Jul;18(7):750-3 [PMID: 10888843]
  74. J Exp Bot. 2022 Apr 5;73(7):2251-2262 [PMID: 35029685]
  75. Trends Plant Sci. 2016 Jun;21(6):506-515 [PMID: 26876195]
  76. J Integr Plant Biol. 2022 Nov;64(11):2029-2032 [PMID: 36036619]
  77. BMC Plant Biol. 2021 Apr 24;21(1):197 [PMID: 33894749]
  78. Plant Sci. 2011 Feb;180(2):333-42 [PMID: 21421378]
  79. Sci Rep. 2015 Oct 23;5:15495 [PMID: 26492850]
  80. Plant Mol Biol. 2016 Jan;90(1-2):49-62 [PMID: 26482477]
  81. Nat Biotechnol. 2022 Sep;40(9):1403-1411 [PMID: 35449414]
  82. Plant J. 2022 Jan;109(2):402-414 [PMID: 34882870]
  83. Nat Methods. 2019 Aug;16(8):687-694 [PMID: 31308553]
  84. Plant Physiol. 2007 Oct;145(2):547-58 [PMID: 17720757]
  85. PLoS One. 2011;6(10):e26222 [PMID: 22039444]
  86. New Phytol. 2013 Mar;197(4):1110-1116 [PMID: 23301879]
  87. Nat Biotechnol. 1998 Jul;16(7):663-6 [PMID: 9661201]
  88. Trends Biotechnol. 2020 Mar;38(3):236-240 [PMID: 31477243]
  89. Science. 2018 Oct 12;362(6411):142 [PMID: 30309924]
  90. Nat Biotechnol. 2002 Jul;20(7):707-12 [PMID: 12089556]
  91. Bioinformatics. 2006 May 15;22(10):1286-7 [PMID: 16551659]
  92. Biochem Biophys Res Commun. 2000 Dec 20;279(2):462-7 [PMID: 11118309]
  93. Genome Biol. 2019 Apr 30;20(1):83 [PMID: 31036063]
  94. Curr Opin Plant Biol. 2015 Apr;24:17-23 [PMID: 25625239]
  95. Nat Methods. 2012 Jun;9(6):591-3 [PMID: 22484848]
  96. Plant Biotechnol J. 2021 Mar;19(3):563-574 [PMID: 33001567]
  97. Life Sci Alliance. 2022 Sep 28;5(12): [PMID: 36171140]
  98. Nat Biotechnol. 2021 Jan;39(1):41-46 [PMID: 32690971]
  99. J Integr Plant Biol. 2023 Sep;65(9):2194-2203 [PMID: 37402157]
  100. Plant Physiol. 2022 Feb 4;188(2):971-983 [PMID: 34718794]
  101. Commun Biol. 2021 May 5;4(1):529 [PMID: 33953336]
  102. Plant Cell. 2022 Feb 3;34(2):718-741 [PMID: 34918159]
  103. Nature. 1998 Jan 15;391(6664):288-91 [PMID: 9440693]
  104. Proc Natl Acad Sci U S A. 1969 Jul;63(3):805-11 [PMID: 5259764]
  105. Plant Sci. 2014 Jan;214:1-12 [PMID: 24268158]
  106. Front Plant Sci. 2018 Jun 21;9:786 [PMID: 29977247]
  107. Plant Physiol. 2020 Jan;182(1):110-122 [PMID: 31451550]
  108. Nat Commun. 2021 Mar 11;12(1):1579 [PMID: 33707425]
  109. Mol Plant. 2020 May 4;13(5):671-674 [PMID: 32222486]
  110. Nat Biotechnol. 2023 Dec;41(12):1758-1764 [PMID: 36894598]
  111. Genome Biol. 2019 Apr 30;20(1):73 [PMID: 31036069]
  112. Sci China Life Sci. 2021 Oct;64(10):1624-1633 [PMID: 33165814]
  113. Nucleic Acids Res. 2002 Jan 1;30(1):325-7 [PMID: 11752327]
  114. Front Plant Sci. 2022 Apr 11;13:879642 [PMID: 35481139]
  115. J Agric Food Chem. 2013 Jan 16;61(2):278-89 [PMID: 23237199]
  116. Cell. 2015 Oct 22;163(3):670-83 [PMID: 26496607]
  117. Plant Biotechnol J. 2020 Dec;18(12):2385-2387 [PMID: 32485068]
  118. Science. 1964 Dec 4;146(3649):1313-5 [PMID: 14207460]
  119. Plant Biotechnol J. 2021 Sep;19(9):1769-1784 [PMID: 33772993]
  120. Plant Cell Rep. 2021 Apr;40(4):621-635 [PMID: 33449143]
  121. Nature. 2009 Aug 13;460(7257):894-898 [PMID: 19633652]
  122. Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045 [PMID: 27924042]
  123. Bioinformatics. 2007 May 15;23(10):1307-8 [PMID: 17392330]
  124. Nat Plants. 2019 Jan;5(1):14-17 [PMID: 30531939]
  125. Angew Chem Int Ed Engl. 2019 Oct 7;58(41):14420-14426 [PMID: 31433107]
  126. Chem Rev. 2021 Oct 27;121(20):12384-12444 [PMID: 34297541]
  127. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):E5726-E5735 [PMID: 29871954]
  128. Nature. 2002 Feb 7;415(6872):644-6 [PMID: 11832946]

Word Cloud

Created with Highcharts 10.0.0cropevolutiontraitsdirectedSDEengineeringgeneticdiversitysyntheticcanthustraitelementsImprovingrequiresallowsbreedersselectadvantageousalleleskeygenesspecieslocilacksufficientsupplementnaturalvariationexpandingpossibilitiesreviewexplorerecentadvancesapplicationsimprovementhighlightingpotentialtargetscodingsequences-regulatorycomputationaltoolsenhanceresilienceperformanceacrossdiverseenvironmentsRecentadvancementsapproachesstreamlinedgenerationvariantsselectionprocessesleveragingadvancedtechnologiesprinciplesminimizeconcernshostfitnessunintendedeffectsopeningpromisingavenueseffectivelyenhancingSynthetictargetedplantCRISPR-Cas9CRISPR-directedbreedingnoncodingDNArationalproteindesignregulatory

Similar Articles

Cited By (1)