Cyclic stretch enhances neutrophil extracellular trap formation.

Manijeh Khanmohammadi, Habiba Danish, Nadia Chandra Sekar, Sergio Aguilera Suarez, Chanly Chheang, Karlheinz Peter, Khashayar Khoshmanesh, Sara Baratchi
Author Information
  1. Manijeh Khanmohammadi: School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
  2. Habiba Danish: School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
  3. Nadia Chandra Sekar: School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
  4. Sergio Aguilera Suarez: School of Engineering, RMIT University, Melbourne, VIC, Australia.
  5. Chanly Chheang: Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
  6. Karlheinz Peter: School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
  7. Khashayar Khoshmanesh: Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
  8. Sara Baratchi: School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia. sara.baratchi@baker.edu.au.

Abstract

BACKGROUND: Neutrophils, the most abundant leukocytes circulating in blood, contribute to host defense and play a significant role in chronic inflammatory disorders. They can release their DNA in the form of extracellular traps (NETs), which serve as scaffolds for capturing bacteria and various blood cells. However, uncontrolled formation of NETs (NETosis) can lead to excessive activation of coagulation pathways and thrombosis. Once neutrophils are migrated to infected or injured tissues, they become exposed to mechanical forces from their surrounding environment. However, the impact of transient changes in tissue mechanics due to the natural process of aging, infection, tissue injury, and cancer on neutrophils remains unknown. To address this gap, we explored the interactive effects of changes in substrate stiffness and cyclic stretch on NETosis. Primary neutrophils were cultured on a silicon-based substrate with stiffness levels of 30 and 300 kPa for at least 3 h under static conditions or cyclic stretch levels of 5% and 10%, mirroring the biomechanics of aged and young arteries.
RESULTS: Using this approach, we found that neutrophils are sensitive to cyclic stretch and that increases in stretch intensity and substrate stiffness enhance nuclei decondensation and histone H3 citrullination (CitH3). In addition, stretch intensity and substrate stiffness promote the response of neutrophils to the NET-inducing agents phorbol 12-myristate 13-acetate (PMA), adenosine triphosphate (ATP), and lipopolysaccharides (LPS). Stretch-induced activation of neutrophils was dependent on calpain activity, the phosphatidylinositol 3-kinase (PI3K)/focal adhesion kinase (FAK) signalling and actin polymerization.
CONCLUSIONS: In summary, these results demonstrate that the mechanical forces originating from the surrounding tissue influence NETosis, an important neutrophil function, and thus identify a potential novel therapeutic target.

Keywords

References

  1. Cytometry A. 2019 May;95(5):565-578 [PMID: 30985081]
  2. Elife. 2017 Jun 02;6: [PMID: 28574339]
  3. J Physiol. 2016 Apr 15;594(8):2061-73 [PMID: 26391109]
  4. Int J Mol Sci. 2023 Mar 17;24(6): [PMID: 36982847]
  5. Hypertension. 2009 Dec;54(6):1328-36 [PMID: 19884567]
  6. Arterioscler Thromb Vasc Biol. 2005 May;25(5):932-43 [PMID: 15731494]
  7. Lab Chip. 2018 Feb 27;18(5):765-774 [PMID: 29410989]
  8. Eur Biophys J. 2016 May;45(4):301-9 [PMID: 26613613]
  9. Blood. 2014 May 1;123(18):2768-76 [PMID: 24366358]
  10. Circ Res. 1964 May;14:400-13 [PMID: 14156860]
  11. Front Immunol. 2019 Oct 22;10:2481 [PMID: 31695698]
  12. Endothelium. 2004 Jan-Feb;11(1):17-28 [PMID: 15203876]
  13. Biophys J. 2008 Feb 15;94(4):1497-507 [PMID: 17993501]
  14. Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7326-7337 [PMID: 32170015]
  15. J Immunol. 2008 Feb 1;180(3):1895-902 [PMID: 18209087]
  16. Blood. 2015 Oct 29;126(18):2128-37 [PMID: 26243777]
  17. J Innate Immun. 2009;1(3):194-201 [PMID: 20375577]
  18. Cell Host Microbe. 2012 Jul 19;12(1):109-16 [PMID: 22817992]
  19. Cell Microbiol. 2006 Apr;8(4):668-76 [PMID: 16548892]
  20. Circ Res. 2015 Mar 13;116(6):1007-21 [PMID: 25767286]
  21. J Phys Condens Matter. 2010 May 19;22(19):194117 [PMID: 20473350]
  22. J Leukoc Biol. 2016 Oct;100(4):801-810 [PMID: 27154356]
  23. FEBS Open Bio. 2017 May 02;7(6):877-886 [PMID: 28593142]
  24. Nat Med. 2016 Feb;22(2):146-53 [PMID: 26779811]
  25. Cell Res. 2011 Feb;21(2):290-304 [PMID: 21060338]
  26. Cell Rep. 2014 Aug 7;8(3):883-96 [PMID: 25066128]
  27. PLoS One. 2017 May 9;12(5):e0176472 [PMID: 28486563]
  28. Cell Tissue Res. 2018 Mar;371(3):531-539 [PMID: 29383445]
  29. Circ Res. 2020 Apr 24;126(9):1228-1241 [PMID: 32324499]
  30. Am J Physiol Gastrointest Liver Physiol. 2007 Dec;293(6):G1147-54 [PMID: 17932231]
  31. Cell Motil Cytoskeleton. 2009 Jun;66(6):328-41 [PMID: 19373775]
  32. Int J Cardiovasc Imaging. 2017 Apr;33(4):521-531 [PMID: 27885494]
  33. Biomaterials. 2021 Apr;271:120715 [PMID: 33677375]
  34. FEBS J. 2017 Jun;284(11):1712-1725 [PMID: 28374518]
  35. Front Immunol. 2013 Jun 24;4:166 [PMID: 23805143]
  36. Front Bioeng Biotechnol. 2021 Dec 09;9:791116 [PMID: 34957080]
  37. Oncoimmunology. 2014 Jul 03;3(7):e950163 [PMID: 25610737]
  38. Front Immunol. 2018 Nov 28;9:2774 [PMID: 30546362]
  39. Front Immunol. 2023 Jun 07;14:1198716 [PMID: 37350954]
  40. Sci Rep. 2017 Dec 13;7(1):17511 [PMID: 29235514]
  41. Lab Chip. 2012 Feb 21;12(4):731-40 [PMID: 22193351]
  42. J Athl Train. 2006 Oct-Dec;41(4):457-65 [PMID: 17273473]
  43. Science. 2004 Mar 5;303(5663):1532-5 [PMID: 15001782]
  44. Curr Hypertens Rep. 2010 Dec;12(6):448-55 [PMID: 20857237]
  45. Blood. 2009 Aug 13;114(7):1387-95 [PMID: 19491394]
  46. Circ Res. 1969 Dec;25(6):677-86 [PMID: 5364644]
  47. Front Immunol. 2017 Feb 06;8:81 [PMID: 28220120]
  48. Front Immunol. 2012 Oct 04;3:307 [PMID: 23060885]
  49. Biochemistry (Mosc). 2020 Oct;85(10):1178-1190 [PMID: 33202203]
  50. Nat Med. 2015 Jul;21(7):815-9 [PMID: 26076037]
  51. Front Immunol. 2019 Jan 24;10:12 [PMID: 30733715]
  52. Blood. 2022 May 26;139(21):3166-3180 [PMID: 35030250]
  53. Front Cell Dev Biol. 2020 Dec 09;8:606989 [PMID: 33363166]
  54. J Cell Sci. 2013 Oct 15;126(Pt 20):4627-35 [PMID: 23943875]
  55. Arterioscler Thromb Vasc Biol. 1998 Jun;18(6):922-7 [PMID: 9633932]
  56. Pflugers Arch. 2000 May;440(1):19-27 [PMID: 10863993]
  57. Front Immunol. 2016 Nov 04;7:484 [PMID: 27867387]
  58. J Cell Biol. 2009 Jan 26;184(2):205-13 [PMID: 19153223]
  59. Circ J. 2009 Nov;73(11):1983-92 [PMID: 19801852]
  60. Antioxid Redox Signal. 2009 Jul;11(7):1651-67 [PMID: 19186986]
  61. Anal Chem. 2011 Apr 15;83(8):3170-7 [PMID: 21413699]
  62. Front Immunol. 2019 Oct 01;10:2320 [PMID: 31632402]
  63. Diabetes. 2016 Apr;65(4):1061-71 [PMID: 26740598]
  64. Elife. 2022 Oct 25;11: [PMID: 36282064]
  65. J Thromb Haemost. 2018 Feb;16(2):316-329 [PMID: 29156107]
  66. J Cell Biol. 2007 Jan 15;176(2):231-41 [PMID: 17210947]
  67. Micromachines (Basel). 2017 Aug 22;8(8): [PMID: 30400447]
  68. Front Physiol. 2017 Oct 30;8:858 [PMID: 29163203]
  69. Nat Commun. 2018 Sep 14;9(1):3767 [PMID: 30218080]
  70. J Biomed Mater Res A. 2012 Jun;100(6):1375-86 [PMID: 22407522]
  71. Vasc Cell. 2015 Sep 18;7:8 [PMID: 26388991]
  72. Am J Physiol Lung Cell Mol Physiol. 2012 Feb 15;302(4):L370-9 [PMID: 22140070]
  73. Physiol Meas. 2002 Nov;23(4):635-48 [PMID: 12450265]
  74. J Vasc Res. 2012;49(6):463-78 [PMID: 22796658]
  75. J Immunol. 2012 Sep 15;189(6):2689-95 [PMID: 22956760]
  76. Circ Res. 2016 Feb 19;118(4):620-36 [PMID: 26892962]
  77. J Exp Med. 2017 Feb;214(2):439-458 [PMID: 28031479]
  78. Circ Res. 1996 Jul;79(1):70-8 [PMID: 8925571]
  79. PLoS One. 2016 Oct 24;11(10):e0165003 [PMID: 27776153]
  80. Front Immunol. 2019 Oct 25;10:2428 [PMID: 31708915]
  81. Blood. 2011 Aug 11;118(6):1632-40 [PMID: 21652678]
  82. Blood. 2014 Apr 17;123(16):2573-84 [PMID: 24335230]
  83. Circulation. 2010 Feb 2;121(4):505-11 [PMID: 20083680]
  84. Cell Host Microbe. 2012 Sep 13;12(3):324-33 [PMID: 22980329]
  85. ACS Appl Mater Interfaces. 2023 Feb 1;15(4):4863-4872 [PMID: 36652631]

MeSH Term

Extracellular Traps
Neutrophils
Humans
Stress, Mechanical
Cells, Cultured

Word Cloud

Created with Highcharts 10.0.0stretchneutrophilsstiffnessNETosissubstratetissuecyclicNeutrophilsbloodcanextracellularNETsHoweverformationactivationmechanicalforcessurroundingchangeslevelsintensityneutrophilCyclicBACKGROUND:abundantleukocytescirculatingcontributehostdefenseplaysignificantrolechronicinflammatorydisordersreleaseDNAformtrapsservescaffoldscapturingbacteriavariouscellsuncontrolledleadexcessivecoagulationpathwaysthrombosismigratedinfectedinjuredtissuesbecomeexposedenvironmentimpacttransientmechanicsduenaturalprocessaginginfectioninjurycancerremainsunknownaddressgapexploredinteractiveeffectsPrimaryculturedsilicon-based30300kPaleast3hstaticconditions5%10%mirroringbiomechanicsagedyoungarteriesRESULTS:UsingapproachfoundsensitiveincreasesenhancenucleidecondensationhistoneH3citrullinationCitH3additionpromoteresponseNET-inducingagentsphorbol12-myristate13-acetatePMAadenosinetriphosphateATPlipopolysaccharidesLPSStretch-induceddependentcalpainactivity thephosphatidylinositol3-kinasePI3K/focaladhesionkinaseFAKsignallingand actinpolymerizationCONCLUSIONS:summaryresultsdemonstrateoriginatinginfluenceimportantfunctionthusidentifypotentialnoveltherapeutictargetenhancestrapMechanotransductionSubstrate

Similar Articles

Cited By