The spatial separation of basic amino acids is similar in RHAMM and hyaluronan binding peptide P15-1 despite different sequences and conformations.

Mehmet Emre Erkanli, Ted Keunsil Kang, Thorsten Kirsch, Eva A Turley, Jin Ryoun Kim, Mary K Cowman
Author Information
  1. Mehmet Emre Erkanli: Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA. ORCID
  2. Ted Keunsil Kang: Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA. ORCID
  3. Thorsten Kirsch: Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA. ORCID
  4. Eva A Turley: Verspeeten Family Cancer Centre, London Health Sciences Centre, Lawson Health Research Institute London Ontario Canada. ORCID
  5. Jin Ryoun Kim: Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA. ORCID
  6. Mary K Cowman: Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA. ORCID

Abstract

Peptides that increase pro-reparative responses to injury and disease by modulating the functional organization of hyaluronan (HA) with its cell surface binding proteins (e.g., soluble receptor for hyaluronan-mediated motility [RHAMM] and integral membrane CD44) have potential therapeutic value. The binding of RHAMM to HA is an attractive target, since RHAMM is normally absent or expressed at low levels in homeostatic conditions, but its expression is significantly elevated in the extracellular matrix during tissue stress, response-to-injury, and in cancers and inflammation-based diseases. The HA-binding site in RHAMM contains two closely spaced sequences of clustered basic amino acids, in an alpha-helical conformation. In the present communication, we test whether an alpha-helical conformation is required for effective peptide binding to HA, and competitive disruption of HA-RHAMM interaction. The HA-binding RHAMM-competitive peptide P15-1, identified using the unbiased approach of phage display, was examined using circular dichroism spectroscopy and the conformation-predictive AI-based AlphaFold2 algorithm. Unlike the HA-binding site in RHAMM, peptide P15-1 was found to adopt irregular conformations in solution rather than alpha helices. Instead, our structural analysis suggests that the primary determinant of peptide-HA binding is associated with a specific clustering and spacing pattern of basic amino acids, allowing favorable electrostatic interaction with carboxylate groups on HA.

Keywords

References

  1. EMBO J. 1994 Jan 15;13(2):286-96 [PMID: 7508860]
  2. Am J Pathol. 2012 Oct;181(4):1250-70 [PMID: 22889846]
  3. J Cell Biol. 2003 Jun 9;161(5):839-43 [PMID: 12796473]
  4. Biochim Biophys Acta Biomembr. 2018 Sep;1860(9):1625-1638 [PMID: 29501606]
  5. Bioorg Med Chem. 2018 Oct 1;26(18):5194-5203 [PMID: 30249497]
  6. J Cell Biol. 2001 May 28;153(5):893-904 [PMID: 11381077]
  7. Matrix Biol. 2019 May;78-79:255-271 [PMID: 30098420]
  8. J Biol Chem. 2013 Sep 6;288(36):25838-25850 [PMID: 23884413]
  9. Biochemistry. 2020 Feb 4;59(4):425-435 [PMID: 31854188]
  10. J Invest Dermatol. 2021 Jun;141(6):1482-1492.e4 [PMID: 33242499]
  11. J Cell Biol. 1991 Mar;112(5):1041-7 [PMID: 1705559]
  12. J Biol Chem. 2003 Aug 22;278(34):32259-65 [PMID: 12801931]
  13. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  14. J Biol Chem. 2012 Dec 14;287(51):43094-107 [PMID: 23118219]
  15. J Biol Chem. 2009 Apr 24;284(17):11309-17 [PMID: 19164299]
  16. J Cell Biol. 2001 Nov 26;155(5):755-62 [PMID: 11714729]
  17. Nucleic Acids Res. 2022 Jul 5;50(W1):W90-W98 [PMID: 35544232]
  18. ACS Appl Mater Interfaces. 2019 Mar 27;11(12):11157-11166 [PMID: 30869853]
  19. J Biol Chem. 2007 Jun 1;282(22):16667-80 [PMID: 17392272]
  20. Immunology. 1989 Jun;67(2):167-75 [PMID: 2666306]
  21. J Phys Chem B. 2020 Dec 24;124(51):11541-11560 [PMID: 33108190]
  22. Matrix Biol. 2019 May;78-79:1-10 [PMID: 30802498]
  23. Chem Soc Rev. 2024 Jun 17;53(12):6445-6510 [PMID: 38747901]
  24. Wound Repair Regen. 2018 Mar;26(2):251-256 [PMID: 29569418]
  25. J Histochem Cytochem. 2021 Jan;69(1):35-47 [PMID: 32623953]
  26. Am J Respir Cell Mol Biol. 2000 Oct;23(4):475-84 [PMID: 11017912]
  27. Adv Healthc Mater. 2023 Feb;12(5):e2202118 [PMID: 36373221]
  28. J Cell Sci. 1992 Oct;103 ( Pt 2):293-8 [PMID: 1282514]
  29. J Comput Aided Mol Des. 2004 Oct;18(10):597-614 [PMID: 15849992]
  30. Glycobiology. 2023 Dec 30;33(12):1117-1127 [PMID: 37769351]
  31. J Mol Biol. 1975 Jul 5;95(3):359-84 [PMID: 1152059]
  32. J Cell Biol. 2006 Dec 18;175(6):1017-28 [PMID: 17158951]
  33. J Biol Chem. 2015 Jul 10;290(28):17041-54 [PMID: 25925953]
  34. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  35. Mediators Inflamm. 2021 Jul 10;2021:4977209 [PMID: 34335086]
  36. J Biol Chem. 2015 May 8;290(19):12379-93 [PMID: 25809479]
  37. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444 [PMID: 34791371]
  38. Nat Rev Mol Cell Biol. 2009 Mar;10(3):228-34 [PMID: 19190671]
  39. Oncogene. 1999 Feb 18;18(7):1435-46 [PMID: 10050880]
  40. J Biol Chem. 2006 Mar 3;281(9):5861-8 [PMID: 16407205]
  41. J Biol Chem. 1993 Apr 25;268(12):8617-23 [PMID: 7682552]
  42. Adv Funct Mater. 2023 Jul 11;33(28): [PMID: 37873031]
  43. Front Immunol. 2015 Jun 02;6:261 [PMID: 26082778]
  44. J Exp Med. 2000 Sep 18;192(6):769-79 [PMID: 10993908]
  45. Matrix Biol. 2019 May;78-79:346-356 [PMID: 29408009]
  46. J Biol Chem. 2012 Oct 26;287(44):37406-19 [PMID: 22948158]
  47. Proc Natl Acad Sci U S A. 2015 May 5;112(18):5579-84 [PMID: 25901321]
  48. J Cell Biol. 1992 Jun;117(6):1343-50 [PMID: 1376732]
  49. Antimicrob Agents Chemother. 2006 Nov;50(11):3856-60 [PMID: 17065624]
  50. Biochemistry. 1981 Mar 3;20(5):1379-85 [PMID: 7225335]
  51. Am J Pathol. 2024 Jun;194(6):1047-1061 [PMID: 38403161]
  52. Nucleic Acids Res. 2021 Jul 2;49(W1):W431-W437 [PMID: 33956157]
  53. Biomaterials. 2018 Nov;183:93-101 [PMID: 30149233]
  54. Cancer Res. 1998 Aug 15;58(16):3736-42 [PMID: 9721887]
  55. J Biol Chem. 2002 Nov 22;277(47):44754-9 [PMID: 12223485]
  56. Adv Carbohydr Chem Biochem. 2017;74:1-59 [PMID: 29173725]
  57. Acta Biomater. 2023 Sep 1;167:293-308 [PMID: 37178990]
  58. Carbohydr Polym. 2024 Feb 1;325:121568 [PMID: 38008475]
  59. ACS Nano. 2021 Dec 28;15(12):20504-20516 [PMID: 34870408]
  60. Biomolecules. 2021 Oct 20;11(11): [PMID: 34827550]
  61. Gene. 1996 Oct 3;174(2):299-306 [PMID: 8890751]
  62. J Cell Biol. 1993 Nov;123(3):749-58 [PMID: 7693717]
  63. Acta Biomater. 2021 Jan 1;119:114-124 [PMID: 33091625]
  64. Nat Biotechnol. 2004 Oct;22(10):1302-6 [PMID: 15361882]

Grants

  1. R21 AR076604/NIAMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0RHAMMpeptidebindingHAhyaluronanHA-bindingbasicaminoacidsconformationP15-1therapeuticsitesequencesalpha-helicalinteractionusingconformationsPeptidesincreasepro-reparativeresponsesinjurydiseasemodulatingfunctionalorganizationcellsurfaceproteinsegsolublereceptorhyaluronan-mediatedmotility[RHAMM]integralmembraneCD44potentialvalueattractivetargetsincenormallyabsentexpressedlowlevelshomeostaticconditionsexpressionsignificantlyelevatedextracellularmatrixtissuestressresponse-to-injurycancersinflammation-baseddiseasescontainstwocloselyspacedclusteredpresentcommunicationtestwhetherrequiredeffectivecompetitivedisruptionHA-RHAMMRHAMM-competitiveidentifiedunbiasedapproachphagedisplayexaminedcirculardichroismspectroscopyconformation-predictiveAI-basedAlphaFold2algorithmUnlikefoundadoptirregularsolutionratheralphahelicesInsteadstructuralanalysissuggestsprimarydeterminantpeptide-HAassociatedspecificclusteringspacingpatternallowingfavorableelectrostaticcarboxylategroupsspatialseparationsimilardespitedifferentP15���1

Similar Articles

Cited By