An Automated Purification Workflow Coupled with Material-Sparing High-Throughput H NMR for Parallel Medicinal Chemistry.

Justin Bellenger, Martin R M Koos, Melissa Avery, Mark Bundesmann, Gregory Ciszewski, Bhagyashree Khunte, Carolyn Leverett, Gregory Ostner, Tim F Ryder, Kathleen A Farley
Author Information
  1. Justin Bellenger: Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States. ORCID
  2. Martin R M Koos: Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States. ORCID
  3. Melissa Avery: Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States.
  4. Mark Bundesmann: Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States.
  5. Gregory Ciszewski: Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States.
  6. Bhagyashree Khunte: Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States.
  7. Carolyn Leverett: Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States.
  8. Gregory Ostner: Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States.
  9. Tim F Ryder: Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States.
  10. Kathleen A Farley: Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States. ORCID

Abstract

In medicinal chemistry, purification and characterization of organic compounds is an ever-growing challenge, with an increasing number of compounds being synthesized at a decreased scale of preparation. In response to this trend, we developed a parallel medicinal chemistry (PMC)-tailored platform, coupling automated purification to mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) on a range of synthetic scales (∼3.0-75.0 μmol). Here, the generation and acquisition of 1.7 mm NMR samples is fully integrated into a high-throughput automated workflow, processing 36 000 compounds yearly. Utilizing dead volume, which is inaccessible in conventional liquid handling, NMR samples are generated on as little as 10 μg without consuming material prioritized for biological assays. As miniaturized PMC synthesis becomes the industry standard, we can now obtain quality NMR spectra from limited material. Paired with automated structure verification, this platform has the potential to allow NMR to become as important for high-throughput analysis as ultrahigh performance liquid chromatography (UPLC)-MS.

References

  1. J Nat Prod. 2009 Apr;72(4):739-44 [PMID: 19399996]
  2. Org Biomol Chem. 2017 Jun 28;15(24):5210-5219 [PMID: 28590477]
  3. Nat Methods. 2024 Feb;21(2):153-155 [PMID: 38191934]
  4. Molecules. 2020 Oct 09;25(20): [PMID: 33050240]
  5. J Org Chem. 2022 Feb 18;87(4):1880-1897 [PMID: 34780177]
  6. Nature. 2018 May;557(7704):228-232 [PMID: 29686415]
  7. J Med Chem. 2018 May 24;61(10):4635-4640 [PMID: 29718668]
  8. ACS Omega. 2022 Dec 01;7(49):44817-44824 [PMID: 36530233]
  9. J Med Chem. 2015 Apr 9;58(7):3223-52 [PMID: 25781223]
  10. ACS Med Chem Lett. 2017 Mar 28;8(4):461-465 [PMID: 28435537]
  11. SLAS Technol. 2022 Dec;27(6):350-360 [PMID: 36028206]
  12. Chem Commun (Camb). 2021 Oct 21;57(84):11037-11040 [PMID: 34608906]
  13. J Med Chem. 2020 Nov 12;63(21):12725-12747 [PMID: 33054210]
  14. Acc Chem Res. 2015 Mar 17;48(3):722-30 [PMID: 25687211]
  15. Methods Mol Biol. 2022;2390:153-176 [PMID: 34731468]
  16. Anal Chem. 2022 Jun 14;94(23):8309-8316 [PMID: 35657338]
  17. ACS Med Chem Lett. 2020 Jul 16;11(8):1506-1513 [PMID: 32832016]
  18. RSC Med Chem. 2021 May 5;12(5):809-818 [PMID: 34124680]
  19. ACS Omega. 2020 Jun 10;5(24):14786-14795 [PMID: 32596616]
  20. J Chromatogr A. 2015 Sep 4;1410:140-6 [PMID: 26256918]
  21. Mass Spectrom Rev. 2018 Sep;37(5):607-629 [PMID: 29120505]
  22. Magn Reson Chem. 2007 Oct;45(10):803-13 [PMID: 17694570]
  23. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  24. Mol Divers. 2009 May;13(2):241-5 [PMID: 19255865]
  25. Magn Reson Chem. 2012 Jun;50(6):429-35 [PMID: 22549844]
  26. Science. 2015 Jan 2;347(6217):49-53 [PMID: 25554781]
  27. J Med Chem. 2020 Aug 27;63(16):8667-8682 [PMID: 32243158]
  28. J Med Chem. 2008 Apr 10;51(7):1981-90 [PMID: 18338841]
  29. J Med Chem. 2024 Aug 22;67(16):13550-13571 [PMID: 38687966]
  30. Arch Biochem Biophys. 2017 Aug 15;628:132-147 [PMID: 28619618]
  31. J Pharmacol Exp Ther. 2006 Aug;318(2):657-65 [PMID: 16675639]
  32. Science. 2021 Dec 24;374(6575):1586-1593 [PMID: 34726479]
  33. ACS Comb Sci. 2012 Jan 9;14(1):51-9 [PMID: 22032344]
  34. J Pharm Biomed Anal. 2019 Nov 30;176:112794 [PMID: 31437749]
  35. Bioorg Med Chem Lett. 2019 Jun 1;29(11):1380-1385 [PMID: 30952592]
  36. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3493-8 [PMID: 25733882]
  37. Medchemcomm. 2017 Aug 16;8(9):1739-1741 [PMID: 30108885]
  38. ACS Med Chem Lett. 2023 May 31;14(7):916-919 [PMID: 37465307]
  39. Drug Discov Today. 2024 Apr;29(4):103945 [PMID: 38460568]
  40. J Lab Autom. 2014 Apr;19(2):176-82 [PMID: 24352687]
  41. J Am Chem Soc. 2003 Sep 10;125(36):10941-6 [PMID: 12952475]

Word Cloud

Created with Highcharts 10.0.0NMRcompoundsautomatedmedicinalchemistrypurificationPMCplatformsampleshigh-throughputliquidmaterialcharacterizationorganicever-growingchallengeincreasingnumbersynthesizeddecreasedscalepreparationresponsetrenddevelopedparallel-tailoredcouplingmassspectrometryMSnuclearmagneticresonancespectroscopyrangesyntheticscales∼30-750μmolgenerationacquisition17mmfullyintegratedworkflowprocessing36 000yearlyUtilizingdeadvolumeinaccessibleconventionalhandlinggeneratedlittle10μgwithoutconsumingprioritizedbiologicalassaysminiaturizedsynthesisbecomesindustrystandardcannowobtainqualityspectralimitedPairedstructureverificationpotentialallowbecomeimportantanalysisultrahighperformancechromatographyUPLC-MSAutomatedPurificationWorkflowCoupledMaterial-SparingHigh-ThroughputHParallelMedicinalChemistry

Similar Articles

Cited By

No available data.