A lymphocyte chemoaffinity axis for lung, non-intestinal mucosae and CNS.

Borja Ocón, Menglan Xiang, Yuhan Bi, Serena Tan, Kevin Brulois, Aiman Ayesha, Manali Kunte, Catherine Zhou, Melissa LaJevic, Nicole Lazarus, Francesca Mengoni, Tanya Sharma, Stephen Montgomery, Jody E Hooper, Mian Huang, Tracy Handel, John R D Dawson, Irina Kufareva, Brian A Zabel, Junliang Pan, Eugene C Butcher
Author Information
  1. Borja Ocón: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. boconmor@stanford.edu. ORCID
  2. Menglan Xiang: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. mxiang1@stanford.edu. ORCID
  3. Yuhan Bi: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. yub10@stanford.edu. ORCID
  4. Serena Tan: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
  5. Kevin Brulois: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
  6. Aiman Ayesha: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. ORCID
  7. Manali Kunte: Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
  8. Catherine Zhou: Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
  9. Melissa LaJevic: Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
  10. Nicole Lazarus: Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
  11. Francesca Mengoni: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
  12. Tanya Sharma: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
  13. Stephen Montgomery: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. ORCID
  14. Jody E Hooper: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. ORCID
  15. Mian Huang: Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
  16. Tracy Handel: Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
  17. John R D Dawson: Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
  18. Irina Kufareva: Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
  19. Brian A Zabel: Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
  20. Junliang Pan: Palo Alto Veterans Institute for Research, Palo Alto, CA, USA. ORCID
  21. Eugene C Butcher: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. ORCID

Abstract

Tissue-selective chemoattractants direct lymphocytes to epithelial surfaces to establish local immune environments, regulate immune responses to food antigens and commensal organisms, and protect from pathogens. Homeostatic chemoattractants for small intestines, colon and skin are known, but chemotropic mechanisms selective for respiratory tract and other non-intestinal mucosal tissues remain poorly understood. Here we leveraged diverse omics datasets to identify GPR25 as a lymphocyte receptor for CXCL17, a chemoattractant cytokine whose expression by epithelial cells of airways, upper gastrointestinal and squamous mucosae unifies the non-intestinal mucosal tissues and distinguishes them from intestinal mucosae. Single-cell transcriptomic analyses show that GPR25 is induced on innate lymphocytes before emigration to the periphery, and is imprinted in secondary lymphoid tissues on activated B and T cells responding to immune challenge. GPR25 characterizes B and T tissue resident memory cells and regulatory T lymphocytes in non-intestinal mucosal tissues and lungs in humans and mediates lymphocyte homing to barrier epithelia of the airways, oral cavity, stomach, and biliary and genitourinary tracts in mouse models. GPR25 is also expressed by T cells in cerebrospinal fluid and CXCL17 by neurons, suggesting a role in central nervous system (CNS) immune regulation. We reveal widespread imprinting of GPR25 on regulatory T cells, suggesting a mechanistic link to population genetics evidence that GPR25 is protective in autoimmunity. Our results define a GPR25-CXCL17 chemoaffinity axis with the potential to integrate immunity and tolerance at non-intestinal mucosae and the CNS.

References

  1. Kunkel, E. J. & Butcher, E. C. Chemokines and the tissue-specific migration of lymphocytes. Immunity 16, 1–4 (2002). [PMID: 11825560]
  2. Ocon, B. et al. A mucosal and cutaneous chemokine ligand for the lymphocyte chemoattractant receptor GPR15. Front. Immunol. 8, 1111 (2017). [PMID: 28936214]
  3. Ricaño-Ponce, I. et al. Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs. J. Autoimmun. 68, 62–74 (2016). [PMID: 26898941]
  4. Robinson, P. C. et al. Genetic dissection of acute anterior uveitis reveals similarities and differences in associations observed with ankylosing spondylitis. Arthritis Rheumatol. 67, 140–151 (2015). [PMID: 25200001]
  5. Habtezion, A., Nguyen, L. P., Hadeiba, H. & Butcher, E. C. Leukocyte trafficking to the small intestine and colon. Gastroenterology 150, 340–354 (2016). [PMID: 26551552]
  6. Imaoka, K. et al. Nasal immunization of nonhuman primates with simian immunodeficiency virus p55gag and cholera toxin adjuvant induces Th1/Th2 help for virus-specific immune responses in reproductive tissues. J. Immunol. 161, 5952–5958 (1998). [PMID: 9834076]
  7. Sato, A. et al. Vaginal memory T cells induced by intranasal vaccination are critical for protective T cell recruitment and prevention of genital HSV-2 disease. J. Virol. 88, 13699–13708 (2014). [PMID: 25231301]
  8. Stary, G. et al. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348, aaa8205 (2015). [PMID: 26089520]
  9. Labuda, J. C. et al. Circulating immunity protects the female reproductive tract from Chlamydia infection. Proc. Natl Acad. Sci. USA 118, e2104407118 (2021). [PMID: 34001624]
  10. Tordesillas, L. & Berin, M. C. Mechanisms of oral tolerance. Clin. Rev. Allergy Immunol. 55, 107–117 (2018). [PMID: 29488131]
  11. Choi, J. et al. Tking from gut to brain: the control of regulatory T cells along the gut-brain axis. Front. Immunol. 13, 916066 (2022). [PMID: 35844606]
  12. Ellwardt, E., Walsh, J. T., Kipnis, J. & Zipp, F. Understanding the role of T cells in CNS homeostasis. Trends Immunol. 37, 154–165 (2016). [PMID: 26775912]
  13. Hu, D. & Weiner, H. L. Unraveling the dual nature of brain CD8 T cells in Alzheimer’s disease. Mol. Neurodegener. 19, 16 (2024). [PMID: 38355649]
  14. Pan, S. et al. Brain Catalog: a comprehensive resource for the genetic landscape of brain-related traits. Nucleic Acids Res. 51, D835–D844 (2023). [PMID: 36243988]
  15. Park, J. E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020). [PMID: 32079746]
  16. Billiet, L. et al. Single-cell profiling identifies a novel human polyclonal unconventional T cell lineage. J. Exp. Med. 220, e20220942 (2023). [PMID: 36939517]
  17. Dermadi, D. et al. Exploration of cell development pathways through high-dimensional single cell analysis in trajectory space. iScience 23, 100842 (2020). [PMID: 32058956]
  18. Gao, X. & Cockburn, I. A. The development and function of CD11c atypical B cells – insights from single cell analysis. Front. Immunol. 13, 979060 (2022). [PMID: 36072594]
  19. Sigmundsdottir, H. & Butcher, E. C. Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat. Immunol. 9, 981–987 (2008). [PMID: 18711435]
  20. Swaminathan, G. et al. The aryl hydrocarbon receptor regulates expression of mucosal trafficking receptor GPR15. Mucosal Immunol. 14, 852–861 (2021). [PMID: 33674764]
  21. Xiong, L. et al. Ahr-Foxp3-RORγt axis controls gut homing of CD4 T cells by regulating GPR15. Sci. Immunol. 5, eaaz7277 (2020). [PMID: 32532834]
  22. Mikhak, Z., Strassner, J. P. & Luster, A. D. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4. J. Exp. Med. 210, 1855–1869 (2013). [PMID: 23960189]
  23. Aleotti, A., Goulty, M., Lewis, C., Giorgini, F. & Feuda, R. The origin, evolution, and molecular diversity of the chemokine system. Life Sci. Alliance 7, e202302471 (2024). [PMID: 38228369]
  24. Ngo, T. et al. RETRACTED ARTICLE: Orphan receptor ligand discovery by pickpocketing pharmacological neighbors. Nat. Chem. Biol. 13, 235–242 (2017). [PMID: 27992882]
  25. Lee, W. Y., Wang, C. J., Lin, T. Y., Hsiao, C. L. & Luo, C. W. CXCL17, an orphan chemokine, acts as a novel angiogenic and anti-inflammatory factor. Am. J. Physiol. Endocrinol. Metab. 304, E32–E40 (2013). [PMID: 23115081]
  26. Burkhardt, A. M. et al. CXCL17 is a mucosal chemokine elevated in idiopathic pulmonary fibrosis that exhibits broad antimicrobial activity. J. Immunol. 188, 6399–6406 (2012). [PMID: 22611239]
  27. Weinstein, E. J. et al. VCC-1, a novel chemokine, promotes tumor growth. Biochem. Biophys. Res. Commun. 350, 74–81 (2006). [PMID: 16989774]
  28. Pisabarro, M. T. et al. Cutting edge: novel human dendritic cell- and monocyte-attracting chemokine-like protein identified by fold recognition methods. J. Immunol. 176, 2069–2073 (2006). [PMID: 16455961]
  29. Choreño-Parra, J. A., Thirunavukkarasu, S., Zúñiga, J. & Khader, S. A. The protective and pathogenic roles of CXCL17 in human health and disease: potential in respiratory medicine. Cytokine Growth Factor Rev. 53, 53–62 (2020). [PMID: 32345516]
  30. Giblin, S. P. & Pease, J. E. What defines a chemokine? – The curious case of CXCL17. Cytokine 168, 156224 (2023). [PMID: 37210967]
  31. Oka, T. et al. CXCL17 attenuates imiquimod-induced psoriasis-like skin inflammation by recruiting myeloid-derived suppressor cells and regulatory T cells. J. Immunol. 198, 3897–3908 (2017). [PMID: 28389593]
  32. Binti Mohd Amir, N. A. S. et al. Evidence for the existence of a CXCL17 receptor distinct from GPR35. J. Immunol. 201, 714–724 (2018). [PMID: 29875152]
  33. Park, S.-J., Lee, S.-J., Nam, S.-Y. & Im, D.-S. GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17-induced migration stimulatory response in THP-1 cells; is GPR35 a receptor for CXCL17? Br. J. Pharmacol. 175, 154–161 (2018). [PMID: 29068046]
  34. Ding, J. et al. CXCL17 induces activation of human mast cells via MRGPRX2. Allergy https://doi.org/10.1111/all.16036 (2024).
  35. White, C. W. et al. CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans. Sci. Signal. 17, eabl3758 (2024). [PMID: 38502733]
  36. Laudanna, C., Campbell, J. J. & Butcher, E. C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271, 981–983 (1996). [PMID: 8584934]
  37. Wyrożemski, Ł. & Qiao, S.-W. Immunobiology and conflicting roles of the human CD161 receptor in T cells. Scand. J. Immunol. 94, e13090 (2021). [PMID: 35611672]
  38. Lazarus, N. H. et al. A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J. Immunol. 170, 3799–3805 (2003). [PMID: 12646646]
  39. Srivastava, R. et al. CXCL17 chemokine-dependent mobilization of CXCR8CD8 effector memory and tissue-resident memory T cells in the vaginal mucosa is associated with protection against genital herpes. J. Immunol. 200, 2915–2926 (2018). [PMID: 29549178]
  40. Hernández-Ruiz, M. et al. Cxcl17 mice develop exacerbated disease in a T cell-dependent autoimmune model. J. Leukoc. Biol. 105, 1027–1039 (2019). [PMID: 30860634]
  41. Kim, J. et al. Spontaneous proliferation of CD4 T cells in RAG-deficient hosts promotes antigen-independent but IL-2-dependent strong proliferative response of naïve CD8 T cells. Front. Immunol. 9, 1907 (2018). [PMID: 30190718]
  42. Pruenster, M. et al. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat. Immunol. 10, 101–108 (2009). [PMID: 19060902]
  43. Wein, A. N. et al. CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J. Exp. Med. 216, 2748–2762 (2019). [PMID: 31558615]
  44. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014). [PMID: 25526304]
  45. Ehrhardt, G. R. et al. Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J. Exp. Med. 202, 783–791 (2005). [PMID: 16157685]
  46. Alon, R. et al. Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nat. Rev. Immunol. 21, 49–64 (2021). [PMID: 33214719]
  47. Liu, J. Z. et al. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 44, 1137–1141 (2012). [PMID: 22961000]
  48. Odoardi, F. et al. T cells become licensed in the lung to enter the central nervous system. Nature 488, 675–679 (2012). [PMID: 22914092]
  49. Skarnes, W. C. et al. A conditional knockout resource for the genome–wide study of mouse gene function. Nature 474, 337–342 (2011).
  50. Kim, E., Tran, M., Sun, Y. & Huh, J. R. Isolation and analyses of lamina propria lymphocytes from mouse intestines. STAR Protoc. 3, 101366 (2022). [PMID: 35573483]
  51. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015). [PMID: 25957682]
  52. Cumba Garcia, L. M., Huseby Kelcher, A. M., Malo, C. S. & Johnson, A. J. Superior isolation of antigen-specific brain infiltrating T cells using manual homogenization technique. J. Immunol. Methods 439, 23–28 (2016). [PMID: 27623324]
  53. Sumida, H. et al. GPR55 regulates intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage. Sci. Immunol. 2, eaao1135 (2017). [PMID: 29222090]
  54. Allen, S. J., Hamel, D. J. & Handel, T. M. A rapid and efficient way to obtain modified chemokines for functional and biophysical studies. Cytokine 55, 168–173 (2011). [PMID: 21632261]
  55. Lazar, G. A., Desjarlais, J. R. & Handel, T. M. De novo design of the hydrophobic core of ubiquitin. Protein Sci. 6, 1167–1178 (1997). [PMID: 9194177]
  56. Zabel, B. A. et al. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280, 34661–34666 (2005). [PMID: 16096270]
  57. Honda, S. et al. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor. J. Immunol. 152, 4026–4035 (1994). [PMID: 7511663]
  58. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023). [PMID: 37291214]
  59. Yoshida, M. et al. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature 602, 321–327 (2022). [PMID: 34937051]
  60. Dominguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022). [PMID: 35549406]
  61. He, P. et al. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 185, 4841–4860.e4825 (2022). [PMID: 36493756]
  62. He, S. et al. Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biol. 21, 294 (2020). [PMID: 33287869]
  63. Schalck, A. et al. Single-cell sequencing reveals trajectory of tumor-infiltrating lymphocyte states in pancreatic cancer. Cancer Discov. 12, 2330–2349 (2022). [PMID: 35849783]
  64. Chang, L. et al. Single-cell clonal tracing of glandular and circulating T cells identifies a population of CD9 CD8 T cells in primary Sjogren’s syndrome. J. Leukoc. Biol. https://doi.org/10.1093/jleuko/qiad071 (2023). [DOI: 10.1093/jleuko/qiad071]
  65. Piehl, N. et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 185, 5028–5039.e5013 (2022). [PMID: 36516855]
  66. Peng, T. et al. Distinct populations of antigen-specific tissue-resident CD8 T cells in human cervix mucosa. JCI Insight 6, e149950 (2021). [PMID: 34156975]
  67. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021). [PMID: 34497389]
  68. Saluzzo, S. et al. Delayed antiretroviral therapy in HIV-infected individuals leads to irreversible depletion of skin- and mucosa-resident memory T cells. Immunity 54, 2842–2858.e2845 (2021). [PMID: 34813775]
  69. Karlsson, M. et al. A single-cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021). [PMID: 34321199]
  70. Sjostedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020). [PMID: 32139519]
  71. Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023). [PMID: 37824663]
  72. Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C. & Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186, 194–208.e118 (2023). [PMID: 36580914]
  73. Matson, K. J. E. et al. Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat. Commun. 13, 5628 (2022). [PMID: 36163250]
  74. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e3529 (2021). [PMID: 34062119]
  75. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024). [PMID: 37231261]
  76. Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122 (2016). [PMID: 27909575]
  77. McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017). [PMID: 28088763]
  78. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018). [PMID: 29608177]
  79. Lim, H. S. & Qiu, P. Quantifying cell-type-specific differences of single-cell datasets using uniform manifold approximation and projection for dimension reduction and Shapley Additive exPlanations. J. Comput. Biol. 30, 738–750 (2023). [PMID: 37093052]
  80. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e727 (2018). [PMID: 29961576]
  81. King, H. W. et al. Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Sci. Immunol. 6, eabe6291 (2021). [PMID: 33579751]
  82. Monaco, G. et al. RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 26, 1627–1640.e1627 (2019). [PMID: 30726743]
  83. Ngo, T. et al. Orphan receptor ligand discovery by pickpocketing pharmacological neighbors. Nat. Chem. Biol. 13, 235–242 (2017). [PMID: 27992882]
  84. Uhlen, M. et al. The human secretome. Sci. Signal. https://doi.org/10.1126/scisignal.aaz0274 (2019).
  85. Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011, bar030 (2011). [PMID: 21785142]
  86. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997). [PMID: 9254694]
  87. Shiryev, S. A., Papadopoulos, J. S., Schaffer, A. A. & Agarwala, R. Improved BLAST searches using longer words for protein seeding. Bioinformatics 23, 2949–2951 (2007). [PMID: 17921491]
  88. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015). [PMID: 25613900]
  89. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).
  90. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). [PMID: 34265844]
  91. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020). [PMID: 31942072]
  92. Abagyan, R. & Totrov, M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J. Mol. Biol. 235, 983–1002 (1994). [PMID: 8289329]

Grants

  1. R21 AI149369/NIAID NIH HHS
  2. I01 BX004115/BLRD VA
  3. R21 AI156662/NIAID NIH HHS
  4. R01 MH125244/NIMH NIH HHS
  5. R01 AI047822/NIAID NIH HHS
  6. R01 GM136202/NIGMS NIH HHS
  7. R01 AI161880/NIAID NIH HHS

MeSH Term

Animals
Female
Humans
Male
Mice
B-Lymphocytes
Central Nervous System
Chemokines, CXC
Chemotaxis
Immunity, Innate
Lung
Lymphocytes
Mice, Inbred C57BL
Mucous Membrane
Receptors, G-Protein-Coupled
T-Lymphocytes, Regulatory
Organ Specificity
Single-Cell Gene Expression Analysis
Immunologic Memory
Epithelial Cells
Neurons
Autoimmune Diseases
Immune Tolerance

Chemicals

Chemokines, CXC
Receptors, G-Protein-Coupled
GPR25 protein, human
CXCL17 protein, human

Word Cloud

Created with Highcharts 10.0.0GPR25non-intestinalcellsTimmunetissuesmucosaelymphocytesmucosallymphocyteCNSchemoattractantsepithelialCXCL17airwaysBregulatorysuggestingchemoaffinityaxisTissue-selectivedirectsurfacesestablishlocalenvironmentsregulateresponsesfoodantigenscommensalorganismsprotectpathogensHomeostaticsmallintestinescolonskinknownchemotropicmechanismsselectiverespiratorytractremainpoorlyunderstoodleverageddiverseomicsdatasetsidentifyreceptorchemoattractantcytokinewhoseexpressionuppergastrointestinalsquamousunifiesdistinguishesintestinalSingle-celltranscriptomicanalysesshowinducedinnateemigrationperipheryimprintedsecondarylymphoidactivatedrespondingchallengecharacterizestissueresidentmemorylungshumansmediateshomingbarrierepitheliaoralcavitystomachbiliarygenitourinarytractsmousemodelsalsoexpressedcerebrospinalfluidneuronsrolecentralnervoussystemregulationrevealwidespreadimprintingmechanisticlinkpopulationgeneticsevidenceprotectiveautoimmunityresultsdefineGPR25-CXCL17potentialintegrateimmunitytolerancelung

Similar Articles

Cited By