A Perspective on Neuroscience Data Standardization with Neurodata Without Borders.

Andrea Pierré, Tuan Pham, Jonah Pearl, Sandeep Robert Datta, Jason T Ritt, Alexander Fleischmann
Author Information
  1. Andrea Pierré: Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912. ORCID
  2. Tuan Pham: Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912.
  3. Jonah Pearl: Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115. ORCID
  4. Sandeep Robert Datta: Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115. ORCID
  5. Jason T Ritt: The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912 jason_ritt@brown.edu alexander_fleischmann@brown.edu. ORCID
  6. Alexander Fleischmann: Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912 jason_ritt@brown.edu alexander_fleischmann@brown.edu.

Abstract

Neuroscience research has evolved to generate increasingly large and complex experimental data sets, and advanced data science tools are taking on central roles in neuroscience research. Neurodata Without Borders (NWB), a standard language for neurophysiology data, has recently emerged as a powerful solution for data management, analysis, and sharing. We here discuss our labs' efforts to implement NWB data science pipelines. We describe general principles and specific use cases that illustrate successes, challenges, and non-trivial decisions in software engineering. We hope that our experience can provide guidance for the neuroscience community and help bridge the gap between experimental neuroscience and data science. Key takeaways from this article are that (1) standardization with NWB requires non-trivial design choices; (2) the general practice of standardization in the lab promotes data awareness and literacy, and improves transparency, rigor, and reproducibility in our science; (3) we offer several feature suggestions to ease the extensibility, publishing/sharing, and usability for NWB standard and users of NWB data.

Keywords

References

  1. Neuron. 2015 Dec 16;88(6):1121-1135 [PMID: 26687221]
  2. Neuron. 2017 Feb 8;93(3):480-490 [PMID: 28182904]
  3. Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668): [PMID: 25823863]
  4. PLoS Biol. 2023 Oct 31;21(10):e3002206 [PMID: 37906721]
  5. Sci Data. 2016 Mar 15;3:160018 [PMID: 26978244]
  6. Trends Cogn Sci. 2021 Jul;25(7):535-538 [PMID: 33994097]
  7. Cell Rep. 2023 Apr 25;42(4):112318 [PMID: 36995938]
  8. PLoS Genet. 2022 Feb 3;18(2):e1009564 [PMID: 35113854]
  9. Sci Data. 2016 Jun 21;3:160044 [PMID: 27326542]
  10. Nature. 2019 Dec;576(7786):266-273 [PMID: 31776518]
  11. Neuron. 2016 Nov 2;92(3):557-558 [PMID: 27809991]
  12. Curr Biol. 2021 Oct 11;31(19):4327-4339.e6 [PMID: 34433077]
  13. PLoS One. 2015 Aug 26;10(8):e0134826 [PMID: 26308551]
  14. PLoS Comput Biol. 2020 Feb 24;16(2):e1007696 [PMID: 32092054]
  15. Nat Commun. 2017 Nov 14;8(1):1477 [PMID: 29133907]
  16. Neuron. 2016 Nov 2;92(3):612-616 [PMID: 27810003]
  17. Nat Methods. 2023 Mar;20(3):403-407 [PMID: 36864199]
  18. Front Neuroinform. 2011 Aug 30;5:16 [PMID: 21941477]
  19. Elife. 2020 Sep 07;9: [PMID: 32880371]
  20. Front Behav Neurosci. 2017 Dec 11;11:244 [PMID: 29321735]
  21. Nucleic Acids Res. 2023 Jan 6;51(D1):D1373-D1380 [PMID: 36305812]
  22. Neuron. 2015 Nov 18;88(4):629-34 [PMID: 26590340]
  23. Neuron. 2022 Nov 16;110(22):3661-3666 [PMID: 36240770]
  24. Science. 2024 May 17;384(6697):747-748 [PMID: 38753788]
  25. Proc IEEE Int Conf Big Data. 2019 Dec;2019:165-179 [PMID: 34632466]
  26. Neuroinformatics. 2008 Sep;6(3):161-74 [PMID: 18958630]
  27. Nat Neurosci. 2024 Jan;27(1):187-195 [PMID: 37985801]
  28. Sci Data. 2022 Oct 13;9(1):620 [PMID: 36229608]
  29. Nature. 2012 Jul 5;487(7405):51-6 [PMID: 22722855]
  30. Sci Data. 2019 Jun 25;6(1):102 [PMID: 31239438]
  31. Nat Neurosci. 2018 Sep;21(9):1281-1289 [PMID: 30127430]
  32. Elife. 2022 Oct 04;11: [PMID: 36193886]
  33. Science. 2022 Jul 8;377(6602):eabo0924 [PMID: 35737810]
  34. PeerJ Comput Sci. 2022 May 5;8:e963 [PMID: 35634111]
  35. Nat Neurosci. 2020 Nov;23(11):1433-1443 [PMID: 32958923]
  36. Nature. 2021 Oct;598(7879):86-102 [PMID: 34616075]
  37. Science. 2019 Apr 19;364(6437):255 [PMID: 31000656]
  38. Nature. 2021 Apr;592(7852):86-92 [PMID: 33473216]

Grants

  1. R01 DC017437/NIDCD NIH HHS
  2. S10 OD025181/NIH HHS

MeSH Term

Animals
Humans
Data Science
Information Dissemination
Neurosciences
Software

Word Cloud

Created with Highcharts 10.0.0datascienceNWBneurosciencestandardizationNeuroscienceresearchexperimentalNeurodataWithoutBordersstandardpipelinesgeneralnon-trivialevolvedgenerateincreasinglylargecomplexsetsadvancedtoolstakingcentralroleslanguageneurophysiologyrecentlyemergedpowerfulsolutionmanagementanalysissharingdiscusslabs'effortsimplementdescribeprinciplesspecificusecasesillustratesuccesseschallengesdecisionssoftwareengineeringhopeexperiencecanprovideguidancecommunityhelpbridgegapKeytakeawaysarticle1requiresdesignchoices2practicelabpromotesawarenessliteracyimprovestransparencyrigorreproducibility3offerseveralfeaturesuggestionseaseextensibilitypublishing/sharingusabilityusersPerspectiveDataStandardizationbigcollaborativeneurodatawithoutborders

Similar Articles

Cited By (1)