Impact of Model Spatial Resolution on Global Geophysical Satellite-Derived Fine Particulate Matter.

Dandan Zhang, Randall V Martin, Aaron van Donkelaar, Chi Li, Haihui Zhu, Alexei Lyapustin
Author Information
  1. Dandan Zhang: Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States. ORCID
  2. Randall V Martin: Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
  3. Aaron van Donkelaar: Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States. ORCID
  4. Chi Li: Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States. ORCID
  5. Haihui Zhu: Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
  6. Alexei Lyapustin: Climate and Radiation Laboratory, the National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland 20771, United States.

Abstract

Global geophysical satellite-derived ambient fine particulate matter (PM) inference relies upon a geophysical relationship (��) from a chemical transport model to relate satellite retrievals of aerosol optical depth (AOD) to surface PM. The resolution dependence of simulated �� warrants further investigation. In this study, we calculate geophysical PM with simulated �� from the GEOS-Chem model in its high-performance configuration (GCHP) at cubed-sphere resolutions of C360 (���25 km) and C48 (���200 km) and satellite AOD at 0.01�� (���1 km). Annual geophysical PM concentrations inferred from satellite AOD and GCHP simulations at ���25 km and ���200 km resolutions exhibit remarkable similarity ( = 0.96, slope = 1.03). This similarity in part reflects opposite resolution responses across components with population-weighted normalized mean difference (PW-NMD) increasing by 5% to 11% for primary species while decreasing by -30% to -5% for secondary species at finer resolution. Despite global similarity, our results also identify larger resolution sensitivities of �� over isolated pollution sources and mountainous regions, where spatial contrast of aerosol concentration and composition is better represented at fine resolution. Our results highlight the resolution dependence of representing near-surface concentrations and the vertical distribution of chemically different species with implications for inferring ground-level PM from columnar AOD.

References

  1. J Adv Model Earth Syst. 2021 Apr;13(4):e2020MS002413 [PMID: 34221240]
  2. Lancet. 2020 Oct 17;396(10258):1223-1249 [PMID: 33069327]
  3. Environ Sci Technol. 2022 Jul 5;56(13):9312-9324 [PMID: 35708253]
  4. Environ Sci Technol. 2021 Nov 16;55(22):15287-15300 [PMID: 34724610]
  5. J Air Waste Manag Assoc. 2014 Dec;64(12):1410-38 [PMID: 25562937]
  6. Environ Sci Technol. 2020 Jul 7;54(13):7879-7890 [PMID: 32491847]
  7. Environ Sci Technol. 2016 Apr 5;50(7):3762-72 [PMID: 26953851]
  8. Sci Data. 2020 May 20;7(1):148 [PMID: 32433468]
  9. Atmos Chem Phys. 2017 Dec 12;17(23):14747-14770 [PMID: 32704248]
  10. Geophys Res Lett. 2012 Jan;39(1): [PMID: 33758438]
  11. Geosci Model Dev. 2018;11(1):305-319 [PMID: 30420911]
  12. Nat Commun. 2016 Nov 15;7:13444 [PMID: 27845764]
  13. Environ Sci Technol. 2023 May 2;57(17):6955-6964 [PMID: 37079489]
  14. Air Qual Atmos Health. 2016 Feb;9(1):51-68 [PMID: 28659994]
  15. Air Qual Atmos Health. 2013 Sep;6(3): [PMID: 24348882]
  16. Environ Health Perspect. 2010 Jun;118(6):847-55 [PMID: 20519161]
  17. J Adv Model Earth Syst. 2022 Jun;14(6):e2021MS002889 [PMID: 35864945]
  18. Sci Data. 2020 Apr 17;7(1):121 [PMID: 32303685]
  19. Environ Sci Technol. 2015 Oct 6;49(19):11340-7 [PMID: 26348650]
  20. J Geophys Res Atmos. 2017 Oct 16;122(19):10510-10538 [PMID: 33006328]

Word Cloud

Created with Highcharts 10.0.0resolutionPMkmgeophysical��AODsatellitesimilarityspeciesGlobalfinemodelaerosoldependencesimulatedGCHPresolutions���25���2000concentrations=resultssatellite-derivedambientparticulatematterinferencereliesuponrelationshipchemicaltransportrelateretrievalsopticaldepthsurfacewarrantsinvestigationstudycalculateGEOS-Chemhigh-performanceconfigurationcubed-sphereC360C4801�����1Annualinferredsimulationsexhibitremarkable96slope103partreflectsoppositeresponsesacrosscomponentspopulation-weightednormalizedmeandifferencePW-NMDincreasing5%11%primarydecreasing-30%-5%secondaryfinerDespiteglobalalsoidentifylargersensitivitiesisolatedpollutionsourcesmountainousregionsspatialcontrastconcentrationcompositionbetterrepresentedhighlightrepresentingnear-surfaceverticaldistributionchemicallydifferentimplicationsinferringground-levelcolumnarImpactModelSpatialResolutionGeophysicalSatellite-DerivedFineParticulateMatter

Similar Articles

Cited By

No available data.