VenomCap: An exon-capture probe set for the targeted sequencing of snake venom genes.

Scott L Travers, Carl R Hutter, Christopher C Austin, Stephen C Donnellan, Matthew D Buehler, Christopher E Ellison, Sara Ruane
Author Information
  1. Scott L Travers: Department of Genetics, Rutgers University, Piscataway, New Jersey, USA. ORCID
  2. Carl R Hutter: Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA. ORCID
  3. Christopher C Austin: Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA. ORCID
  4. Stephen C Donnellan: South Australian Museum, Adelaide, Australia. ORCID
  5. Matthew D Buehler: Department of Biological Sciences and Auburn Museum of Natural History, Auburn University, Auburn, Alabama, USA. ORCID
  6. Christopher E Ellison: Department of Genetics, Rutgers University, Piscataway, New Jersey, USA. ORCID
  7. Sara Ruane: Life Sciences Section, Negaunee Integrative Research Center, Field Museum, Chicago, Illinois, USA. ORCID

Abstract

Snake venoms are complex mixtures of toxic proteins that hold significant medical, pharmacological and evolutionary interest. To better understand the genetic diversity underlying snake venoms, we developed VenomCap, a novel exon-capture probe set targeting toxin-coding genes from a wide range of elapid snakes, with a particular focus on the ecologically diverse and medically important subfamily Hydrophiinae. We tested the capture success of VenomCap across 24 species, representing all major elapid lineages. We included snake phylogenomic probes in the VenomCap capture set, allowing us to compare capture performance between venom and phylogenomic loci and to infer elapid phylogenetic relationships. We demonstrated VenomCap's ability to recover exons from ~1500 target markers, representing a total of 24 known venom gene families, which includes the dominant gene families found in elapid venoms. We find that VenomCap's capture results are robust across all elapids sampled, and especially among hydrophiines, with respect to measures of target capture success (target loci matched, sensitivity, specificity and missing data). As a cost-effective and efficient alternative to full genome sequencing, VenomCap can dramatically accelerate the sequencing and analysis of venom gene families. Overall, our tool offers a model for genomic studies on snake venom gene diversity and evolution that can be expanded for comprehensive comparisons across the other families of venomous snakes.

Keywords

References

  1. Nucleic Acids Res. 2012 May;40(10):e72 [PMID: 22323520]
  2. Biochimie. 2006 Dec;88(12):1923-31 [PMID: 16908092]
  3. Proc Natl Acad Sci U S A. 2020 May 19;117(20):10911-10920 [PMID: 32366667]
  4. Mol Biol Evol. 2013 May;30(5):1188-95 [PMID: 23418397]
  5. BMC Genomics. 2013;14 Suppl 1:S7 [PMID: 23368723]
  6. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  7. Nat Rev Dis Primers. 2017 Sep 14;3:17063 [PMID: 28905944]
  8. Mol Biol Evol. 2018 May 1;35(5):1210-1224 [PMID: 29514313]
  9. Mol Biol Evol. 2005 Sep;22(9):1853-64 [PMID: 15930152]
  10. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  11. Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2313440121 [PMID: 38578985]
  12. PLoS Comput Biol. 2013;9(8):e1003118 [PMID: 23950696]
  13. Mol Biol Evol. 2022 Apr 10;39(4): [PMID: 35413123]
  14. Toxicon. 2012 Mar 15;59(4):456-63 [PMID: 21184772]
  15. Toxicon. 2015 Jan;93:1-10 [PMID: 25448392]
  16. Genome Res. 2019 Apr;29(4):635-645 [PMID: 30894395]
  17. Toxins (Basel). 2013 Dec 18;5(12):2621-55 [PMID: 24351719]
  18. Genome Biol. 2009;10(10):R116 [PMID: 19835619]
  19. BMC Evol Biol. 2008 Feb 28;8:70 [PMID: 18307759]
  20. Mol Biol Evol. 2020 Jun 1;37(6):1744-1760 [PMID: 32077944]
  21. Curr Pharm Des. 2016;22(34):5270-5293 [PMID: 27339430]
  22. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  23. Mol Phylogenet Evol. 2016 Jul;100:160-169 [PMID: 27083862]
  24. Annu Rev Anim Biosci. 2020 Feb 15;8:91-116 [PMID: 31702940]
  25. Syst Biol. 2020 May 1;69(3):502-520 [PMID: 31550008]
  26. Front Microbiol. 2021 Apr 27;12:644662 [PMID: 33986735]
  27. Mol Biol Evol. 2020 Mar 1;37(3):904-922 [PMID: 31710677]
  28. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33866357]
  29. J Proteome Res. 2007 Aug;6(8):3093-107 [PMID: 17608513]
  30. J Proteomics. 2014 Oct 14;110:209-29 [PMID: 25109465]
  31. Bioinformatics. 2019 Feb 1;35(3):526-528 [PMID: 30016406]
  32. Curr Biol. 2016 Sep 26;26(18):2434-2445 [PMID: 27641771]
  33. Cell Mol Life Sci. 2008 Dec;65(24):4039-54 [PMID: 18979207]
  34. FEBS Lett. 2000 May 19;473(3):303-10 [PMID: 10818230]
  35. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  36. J Hered. 2023 Aug 23;114(5):445-458 [PMID: 37018459]
  37. PLoS One. 2014 May 16;9(5):e97876 [PMID: 24837716]
  38. Proc Natl Acad Sci U S A. 2021 May 18;118(20): [PMID: 33972420]
  39. Proteomics. 2006 Dec;6(24):6554-65 [PMID: 17109379]
  40. Mol Ecol Resour. 2017 Nov;17(6):e12-e24 [PMID: 28417603]
  41. BMC Biol. 2023 Jun 6;21(1):136 [PMID: 37280596]
  42. Front Genet. 2020 Feb 21;10:1407 [PMID: 32153629]
  43. Mol Biol Evol. 2016 Jan;33(1):281-94 [PMID: 26474846]
  44. R Soc Open Sci. 2016 Jan 20;3(1):150277 [PMID: 26909162]
  45. Biochimie. 2011 Apr;93(4):659-68 [PMID: 21172403]
  46. Sci Rep. 2019 Mar 26;9(1):5133 [PMID: 30914698]
  47. Mol Biol Evol. 2015 Jan;32(1):173-83 [PMID: 25338510]
  48. J Exp Biol. 2022 Apr 1;225(7): [PMID: 35363854]
  49. Arch Toxicol. 2023 Jan;97(1):133-153 [PMID: 36437303]
  50. Toxins (Basel). 2019 Sep 25;11(10): [PMID: 31557973]
  51. Gigascience. 2024 Jan 2;13: [PMID: 38241143]
  52. Mol Ecol Resour. 2016 Sep;16(5):1069-83 [PMID: 27241806]
  53. Mol Ecol Resour. 2022 Apr;22(3):1100-1119 [PMID: 34569723]
  54. J Evol Biol. 2008 May;21(3):682-95 [PMID: 18384538]
  55. Proc Biol Sci. 2016 Apr 27;283(1829): [PMID: 27122552]
  56. Nat Biotechnol. 2009 Feb;27(2):182-9 [PMID: 19182786]
  57. Proc Natl Acad Sci U S A. 2021 Jan 26;118(4): [PMID: 33468678]
  58. Toxicon. 2005 Sep 1;46(3):328-36 [PMID: 15993914]
  59. Mol Phylogenet Evol. 2014 Dec;81:221-31 [PMID: 25193610]
  60. Med J Aust. 2017 Aug 7;207(3):119-125 [PMID: 28764620]
  61. Toxins (Basel). 2022 Mar 30;14(4): [PMID: 35448856]
  62. Mol Phylogenet Evol. 1998 Aug;10(1):67-81 [PMID: 9751918]
  63. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  64. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  65. Gigascience. 2022 Apr 1;11: [PMID: 35365832]
  66. Genetics. 2017 Jul;206(3):1569-1580 [PMID: 28476866]
  67. Cell Rep. 2022 Jul 12;40(2):111079 [PMID: 35830808]
  68. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  69. Cell Mol Life Sci. 2005 Nov;62(22):2679-93 [PMID: 16261251]
  70. Toxins (Basel). 2017 Sep 18;9(9): [PMID: 28927001]
  71. Mol Biol Evol. 2021 Oct 27;38(11):4867-4883 [PMID: 34320652]
  72. J Proteome Res. 2011 Feb 4;10(2):739-50 [PMID: 21133350]
  73. Sci Rep. 2024 Apr 25;14(1):9489 [PMID: 38664489]
  74. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  75. Trends Pharmacol Sci. 2020 Aug;41(8):570-581 [PMID: 32564899]
  76. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  77. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  78. J Mol Evol. 2008 Feb;66(2):151-66 [PMID: 18253686]
  79. Sci Rep. 2018 Jul 26;8(1):11300 [PMID: 30050104]
  80. Proc Natl Acad Sci U S A. 2021 Apr 27;118(17): [PMID: 33875585]
  81. J Hered. 2024 Aug 20;115(5):487-497 [PMID: 38722259]
  82. Cell Mol Life Sci. 2007 Nov;64(21):2829-40 [PMID: 17906946]

Grants

  1. /Coypu Foundation
  2. K12 GM093854/NIGMS NIH HHS
  3. DBI-2010988/National Science Foundation
  4. DEB-2224119/National Science Foundation
  5. GM093854/NIH HHS
  6. DEB-1926783/National Science Foundation
  7. DEB-1146033/National Science Foundation
  8. NGS-53506R-18/National Geographic Society

MeSH Term

Animals
Exons
Snake Venoms
Elapidae
Phylogeny
Sequence Analysis, DNA
Genetic Variation

Chemicals

Snake Venoms

Word Cloud

Created with Highcharts 10.0.0snakecapturevenomvenomsVenomCapelapidgenefamiliessetacrosstargetsequencingdiversityexon-captureprobegenessnakesHydrophiinaesuccess24representingphylogenomiclociVenomCap'scanSnakecomplexmixturestoxicproteinsholdsignificantmedicalpharmacologicalevolutionaryinterestbetterunderstandgeneticunderlyingdevelopednoveltargetingtoxin-codingwiderangeparticularfocusecologicallydiversemedicallyimportantsubfamilytestedspeciesmajorlineagesincludedprobesallowinguscompareperformanceinferphylogeneticrelationshipsdemonstratedabilityrecoverexons~1500markerstotalknownincludesdominantfoundfindresultsrobustelapidssampledespeciallyamonghydrophiinesrespectmeasuresmatchedsensitivityspecificitymissingdatacost-effectiveefficientalternativefullgenomedramaticallyaccelerateanalysisOveralltooloffersmodelgenomicstudiesevolutionexpandedcomprehensivecomparisonsvenomousVenomCap:targetedElapidaeanimalphylogenomicsgenomicsvenomics

Similar Articles

Cited By