Influences of topography on nitrate export from forested watersheds on Yakushima Island, a Natural World Heritage site.

Ken'ichi Shinozuka, Osamu Nagafuchi, Koyomi Nakazawa, Urumu Tsunogai, Fumiko Nakagawa, Kenshi Tetsuka, Natsumi Tetsuka, Senichi Ebise
Author Information
  1. Ken'ichi Shinozuka: River Basin Research Center, Gifu University 1-1 Yanagido Gifu City Gifu 501-1112 Japan kennichi97@gmail.com. ORCID
  2. Osamu Nagafuchi: Environmental Science Institute, Comprehensive Research Organizations of Fukuoka Institute of Technology Wajiro Higashi, Higashi-ku Fukuoka 811-0295 Japan. ORCID
  3. Koyomi Nakazawa: Department of Environmental and Civil Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu Toyama 930-0975 Japan. ORCID
  4. Urumu Tsunogai: Graduate School of Environmental Studies, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan. ORCID
  5. Fumiko Nakagawa: Graduate School of Environmental Studies, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan.
  6. Kenshi Tetsuka: Yakushima Institute of Environmental Sciences Isso, Yakushima-cho, Kumage Kagoshima 891-4203 Japan.
  7. Natsumi Tetsuka: Yakushima Institute of Environmental Sciences Isso, Yakushima-cho, Kumage Kagoshima 891-4203 Japan.
  8. Senichi Ebise: Faculty of Science and Engineering, Setsunan University Ikedanakamachi Neyagawa City Osaka 572-8508 Japan.

Abstract

In East Asia, high levels of atmospheric nitrogen are deposited onto land. This could elevate the nitrate levels in coastal waters river runoff, even from areas where anthropogenic sources are minimal. It is important to identify NO sources in river water and the mechanisms involved in NO runoff. Yakushima Island, Japan, is a Natural World Heritage site featuring numerous watersheds with diverse topography and rivers. The area receives significant precipitation, with up to 10���000 mm in mountainous regions. Its proximity to coastal urban areas in China (���800 km) leads to substantial atmospheric nitrogen wet and dry deposition in the island's forests. The study aimed to clarify regional water quality characteristics by conducting long-term monitoring of dissolved ion components (Na, K, Mg, Ca, F, Cl , NO , and SO ) in river waters, and to determine the effects of NO sources and watershed topography on NO behavior. Dissolved ion concentrations were obtained from a long-term monitoring (2011-2014) dataset. Cluster analysis classified runoff water from the central mountainous region into three groups: western region, other regions, and groundwater. The average NO concentration in the western region was 10.2 ��mol L, which was higher than the 6.24 ��mol L observed in the other regions. Stable isotope analysis in December 2018 showed that river water NO (1.39 ��mol L) in the western region had a high proportion of atmospheric NO . Topographic analysis indicated that NO and atmospheric NO increased in smaller watersheds and steeper terrain. This study conclude that NO output is controlled by topography.

References

  1. Water Air Soil Pollut. 2012 Nov;223(9):5575-5597 [PMID: 23136452]
  2. Environ Sci Technol. 2020 Apr 7;54(7):4231-4239 [PMID: 32157884]
  3. Nat Commun. 2016 Feb 08;7:10571 [PMID: 26853267]
  4. Nature. 2001 Nov 8;414(6860):166-7 [PMID: 11700544]
  5. Environ Sci Technol. 2013;47(23):13412-21 [PMID: 24199648]
  6. Sci Total Environ. 2019 Oct 15;687:667-678 [PMID: 31220720]
  7. Environ Sci Technol. 2018 May 15;52(10):5561-5570 [PMID: 29673249]
  8. ACS Earth Space Chem. 2023 Aug 23;7(9):1592-1609 [PMID: 37753209]
  9. Environ Pollut. 2021 Oct 15;287:117634 [PMID: 34182389]
  10. J Contam Hydrol. 2019 Jan;220:128-135 [PMID: 30591238]
  11. Ecol Appl. 2006 Jun;16(3):1183-93 [PMID: 16827011]
  12. Ambio. 2002 Mar;31(2):64-71 [PMID: 12078011]
  13. Sci Rep. 2018 Jun 29;8(1):9324 [PMID: 29959366]
  14. Rapid Commun Mass Spectrom. 2008;22(3):345-54 [PMID: 18181234]
  15. Ecol Appl. 2006 Aug;16(4):1590-607 [PMID: 16937820]
  16. Rapid Commun Mass Spectrom. 2010 Apr 15;24(7):1085-92 [PMID: 20213700]
  17. Trends Ecol Evol. 1997 Apr;12(4):139-43 [PMID: 21238010]
  18. Environ Sci Technol. 2008 Sep 1;42(17):6487-93 [PMID: 18800519]
  19. Environ Sci Technol. 2004 Apr 1;38(7):2175-81 [PMID: 15112822]
  20. J Environ Manage. 2024 Aug;366:121729 [PMID: 38976949]
  21. Sci Total Environ. 2019 Nov 10;690:290-299 [PMID: 31291607]
  22. Rapid Commun Mass Spectrom. 2008 May;22(10):1587-96 [PMID: 18433083]
  23. Environ Pollut. 2017 Apr;223:644-656 [PMID: 28185707]

Word Cloud

Created with Highcharts 10.0.0NOatmosphericriverwatertopographyregionrunoffsourceswatershedsregionsanalysiswestern��molLhighlevelsnitrogennitratecoastalwatersareasYakushimaIslandNaturalWorldHeritagesitemountainousstudylong-termmonitoringionEastAsiadepositedontolandelevateevenanthropogenicminimalimportantidentifymechanismsinvolvedJapanfeaturingnumerousdiverseriversareareceivessignificantprecipitation10���000mmproximityurbanChina���800kmleadssubstantialwetdrydepositionisland'sforestsaimedclarifyregionalqualitycharacteristicsconductingdissolvedcomponentsNaKMgCaFClSOdetermineeffectswatershedbehaviorDissolvedconcentrationsobtained2011-2014datasetClusterclassifiedcentralthreegroups:groundwateraverageconcentration102higher624observedStableisotopeDecember2018showed139proportionTopographicindicatedincreasedsmallersteeperterrainconcludeoutputcontrolledInfluencesexportforested

Similar Articles

Cited By