A framework for developing a real-time lake phytoplankton forecasting system to support water quality management in the face of global change.

Cayelan C Carey, Ryan S D Calder, Renato J Figueiredo, Robert B Gramacy, Mary E Lofton, Madeline E Schreiber, R Quinn Thomas
Author Information
  1. Cayelan C Carey: Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA. cayelan@vt.edu. ORCID
  2. Ryan S D Calder: Department of Population Health Sciences, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA, 24061, USA. ORCID
  3. Renato J Figueiredo: Department of Electrical and Computer Engineering, University of Florida, 968 Center Drive, Gainesville, FL, 32611, USA. ORCID
  4. Robert B Gramacy: Department of Statistics, Virginia Tech, 250 Drillfield Drive, Blacksburg, VA, 24061, USA. ORCID
  5. Mary E Lofton: Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA. ORCID
  6. Madeline E Schreiber: Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA. ORCID
  7. R Quinn Thomas: Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA. ORCID

Abstract

Phytoplankton blooms create harmful toxins, scums, and taste and odor compounds and thus pose a major risk to drinking water safety. Climate and land use change are increasing the frequency and severity of blooms, motivating the development of new approaches for preemptive, rather than reactive, water management. While several real-time phytoplankton forecasts have been developed to date, none are both automated and quantify uncertainty in their predictions, which is critical for manager use. In response to this need, we outline a framework for developing the first automated, real-time lake phytoplankton forecasting system that quantifies uncertainty, thereby enabling managers to adapt operations and mitigate blooms. Implementation of this system calls for new, integrated ecosystem and statistical models; automated cyberinfrastructure; effective decision support tools; and training for forecasters and decision makers. We provide a research agenda for the creation of this system, as well as recommendations for developing real-time phytoplankton forecasts to support management.

Keywords

References

  1. Ecol Appl. 2022 Mar;32(2):e2500 [PMID: 34800082]
  2. Water Res. 2018 May 1;134:74-85 [PMID: 29407653]
  3. Harmful Algae. 2020 Jan;91:101601 [PMID: 32057347]
  4. Glob Chang Biol. 2022 Aug;28(16):4861-4881 [PMID: 35611634]
  5. Water Res. 2020 Sep 1;182:115959 [PMID: 32531494]
  6. Ecol Evol. 2023 May 02;13(5):e10001 [PMID: 37153017]
  7. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1424-1432 [PMID: 29382745]
  8. Water Res. 2012 Apr 1;46(5):1349-63 [PMID: 21893330]
  9. Environ Sci Pollut Res Int. 2022 Nov;29(52):79082-79094 [PMID: 35701699]
  10. J Theor Biol. 2020 Nov 21;505:110421 [PMID: 32735993]
  11. Sci Total Environ. 2021 Oct 20;792:148418 [PMID: 34157534]
  12. Ecol Appl. 2022 Oct;32(7):e2642 [PMID: 35470923]
  13. Environ Health Perspect. 2001 Jul;109(7):663-8 [PMID: 11485863]
  14. Environ Microbiol Rep. 2009 Feb;1(1):27-37 [PMID: 23765717]
  15. Nature. 2021 Jun;594(7861):66-70 [PMID: 34079137]
  16. Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):12112-12117 [PMID: 30409800]
  17. Harmful Algae. 2020 Jan;91:101729 [PMID: 32057346]
  18. Ecol Lett. 2015 Apr;18(4):375-84 [PMID: 25728551]
  19. Ecol Appl. 2011 Jul;21(5):1429-42 [PMID: 21830693]
  20. Ecol Appl. 2022 Jul;32(5):e2590 [PMID: 35343013]
  21. Harmful Algae. 2024 Mar;133:102599 [PMID: 38485445]
  22. Sci Total Environ. 2023 Apr 15;869:161784 [PMID: 36702268]
  23. Geohealth. 2023 Aug 29;7(9):e2023GH000858 [PMID: 37650049]
  24. J Environ Manage. 2024 Jan 1;349:119518 [PMID: 37944321]
  25. Harmful Algae. 2016 Apr;54:112-127 [PMID: 28073471]
  26. Ecol Appl. 2017 Oct;27(7):2048-2060 [PMID: 28646611]
  27. Glob Chang Biol. 2023 Apr;29(7):1691-1714 [PMID: 36622168]
  28. Nat Ecol Evol. 2020 Nov;4(11):1459-1471 [PMID: 32929239]
  29. Sci Rep. 2017 Sep 7;7(1):10762 [PMID: 28883487]
  30. Glob Chang Biol. 2021 Jun;27(11):2507-2519 [PMID: 33774887]
  31. Proc Natl Acad Sci U S A. 2002 May 14;99 Suppl 3:7280-7 [PMID: 12011407]
  32. Harmful Algae. 2023 Jul;126:102442 [PMID: 37290890]
  33. Water Res. 2018 Sep 1;140:34-43 [PMID: 29684700]
  34. Bioscience. 2022 Jul 18;72(11):1050-1061 [PMID: 36325103]
  35. Ecol Appl. 2020 Jul;30(5):e02111 [PMID: 32112455]
  36. Sci Total Environ. 2023 Jan 15;856(Pt 1):158959 [PMID: 36155036]
  37. Environ Sci Technol. 2009 Jan 1;43(1):12-9 [PMID: 19209578]
  38. Sci Data. 2023 Dec 13;10(1):897 [PMID: 38092782]
  39. Nature. 2019 Oct;574(7780):667-670 [PMID: 31610543]
  40. N Engl J Med. 1998 Mar 26;338(13):873-8 [PMID: 9516222]
  41. F1000Prime Rep. 2014 Jun 02;6:39 [PMID: 24991416]
  42. PLoS Comput Biol. 2021 Oct 28;17(10):e1009440 [PMID: 34710084]
  43. Ecol Indic. 2021 Sep 1;128:1-107822 [PMID: 35558093]
  44. PLoS One. 2022 Mar 4;17(3):e0264892 [PMID: 35245337]
  45. Harmful Algae. 2016 Jun;56:44-66 [PMID: 28073496]
  46. Sci Total Environ. 2023 Nov 20;900:165781 [PMID: 37499836]
  47. Water Res. 2020 Nov 1;186:116307 [PMID: 32846380]
  48. Environ Sci Technol. 2017 Aug 15;51(16):8933-8943 [PMID: 28650153]

Grants

  1. EF-2318861/National Science Foundation
  2. DBI-1933016/National Science Foundation
  3. DBI-1933102/National Science Foundation
  4. OISE-2330211/National Science Foundation
  5. OAC-2311123/National Science Foundation
  6. OAC-2311124/National Science Foundation
  7. DEB-1926050/National Science Foundation
  8. DEB-2327030/National Science Foundation

MeSH Term

Phytoplankton
Lakes
Water Quality
Forecasting
Climate Change
Environmental Monitoring

Word Cloud

Created with Highcharts 10.0.0managementreal-timephytoplanktonsystemsupportbloomswaterautomateddevelopingPhytoplanktonusechangenewforecastsuncertaintyframeworklakeforecastingdecisioncreateharmfultoxinsscumstasteodorcompoundsthusposemajorriskdrinkingsafetyClimatelandincreasingfrequencyseveritymotivatingdevelopmentapproachespreemptiveratherreactiveseveraldevelopeddatenonequantifypredictionscriticalmanagerresponseneedoutlinefirstquantifiestherebyenablingmanagersadaptoperationsmitigateImplementationcallsintegratedecosystemstatisticalmodelscyberinfrastructureeffectivetoolstrainingforecastersmakersprovideresearchagendacreationwellrecommendationsqualityfaceglobalCyanobacteriaCyberinfrastructureDecisionForecastbloomWater

Similar Articles

Cited By (1)