Evolution of unexpected diversity in a putative mating type locus and its correlation with genome variability reveals likely asexuality in the model mycorrhizal fungus Rhizophagus irregularis.

Soon-Jae Lee, Eric Risse, Ivan D Mateus, Ian R Sanders
Author Information
  1. Soon-Jae Lee: Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland.
  2. Eric Risse: Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland.
  3. Ivan D Mateus: Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland.
  4. Ian R Sanders: Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland. ian.sanders@unil.ch. ORCID

Abstract

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) form mutualistic partnerships with approximately 80% of plant species. AMF, and their diversity, play a fundamental role in plant growth, driving plant diversity, and global carbon cycles. Knowing whether AMF are sexual or asexual has fundamental consequences for how they can be used in agricultural applications. Evidence for and against sexuality in the model AMF, Rhizophagus irregularis, has been proposed. The discovery of a putative mating-type locus (MAT locus) in R. irregularis, and the previously suggested recombination among nuclei of a dikaryon R. irregularis isolate, potentially suggested sexuality. Unless undergoing frequent sexual reproduction, evolution of MAT-locus diversity is expected to be very low. Additionally, in sexual species, MAT-locus evolution is decoupled from the evolution of arbitrary genome-wide loci.
RESULTS: We studied MAT-locus diversity of R. irregularis. This was then compared to diversification in a phosphate transporter gene (PTG), that is not involved in sex, and to genome-wide divergence, defined by 47,378 single nucleotide polymorphisms. Strikingly, we found unexpectedly high MAT-locus diversity indicating that either it is not involved in sex, or that AMF are highly active in sex. However, a strongly congruent evolutionary history of the MAT-locus, PTG and genome-wide arbitrary loci allows us to reject both the hypothesis that the MAT-locus is involved in mating and that the R. irregularis lineage is sexual.
CONCLUSION: Our finding shapes the approach to developing more effective AMF strains and is highly informative as it suggests that introduced strains applied in agriculture will not exchange DNA with native populations.

Keywords

References

  1. Front Plant Sci. 2021 Jun 22;12:693037 [PMID: 34239529]
  2. Genetics. 2018 Aug;209(4):1235-1278 [PMID: 29844134]
  3. Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736): [PMID: 29109228]
  4. Heredity (Edinb). 2013 Dec;111(6):445-55 [PMID: 23838688]
  5. Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15836-41 [PMID: 24019480]
  6. BMC Evol Biol. 2009 Jan 15;9:13 [PMID: 19146661]
  7. Curr Biol. 2021 Apr 12;31(7):1531-1538.e6 [PMID: 33545043]
  8. New Phytol. 2003 Mar;157(3):569-578 [PMID: 33873405]
  9. Trends Ecol Evol. 1996 Feb;11(2):41-6 [PMID: 21237759]
  10. Curr Biol. 2011 Jul 12;21(13):1129-34 [PMID: 21683598]
  11. ISME J. 2018 Jan;12(1):17-30 [PMID: 29027999]
  12. New Phytol. 2018 Dec;220(4):1108-1115 [PMID: 29355963]
  13. Microbiol Mol Biol Rev. 1998 Mar;62(1):55-70 [PMID: 9529887]
  14. FEMS Microbiol Rev. 1996 Mar;18(1):65-87 [PMID: 8672296]
  15. New Phytol. 2018 Dec;220(4):1161-1171 [PMID: 29355972]
  16. Mol Ecol. 2019 Nov;28(21):4737-4754 [PMID: 31550391]
  17. Mol Biol Evol. 1992 Jul;9(4):678-87 [PMID: 1630306]
  18. New Phytol. 2022 Feb;233(3):1097-1107 [PMID: 34747029]
  19. Nat Methods. 2012 Jul 30;9(8):772 [PMID: 22847109]
  20. Sci Rep. 2017 Aug 11;7(1):7932 [PMID: 28801599]
  21. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  22. PLoS Comput Biol. 2019 Apr 8;15(4):e1006650 [PMID: 30958812]
  23. PLoS One. 2013 Nov 19;8(11):e80729 [PMID: 24260466]
  24. Nat Microbiol. 2016 Mar 21;1(6):16033 [PMID: 27572831]
  25. Heredity (Edinb). 2002 Feb;88(2):142-7 [PMID: 11932772]
  26. Elife. 2018 Dec 05;7: [PMID: 30516133]
  27. Mol Biol Evol. 1986 Sep;3(5):418-26 [PMID: 3444411]
  28. Appl Environ Microbiol. 2011 Mar;77(5):1888-91 [PMID: 21193669]
  29. ISME J. 2016 Oct;10(10):2514-26 [PMID: 26953600]
  30. Front Genet. 2019 Nov 20;10:1170 [PMID: 31824571]
  31. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  32. Curr Biol. 2010 Jul 13;20(13):1216-21 [PMID: 20541408]
  33. Mol Microbiol. 2014 Oct;94(2):383-402 [PMID: 25156107]
  34. ISME J. 2021 Aug;15(8):2180-2182 [PMID: 33941891]
  35. Nature. 2018 Apr;556(7701):339-344 [PMID: 29643504]
  36. Commun Biol. 2021 Jul 22;4(1):901 [PMID: 34294866]
  37. PLoS One. 2012;7(5):e36950 [PMID: 22629347]
  38. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9172-7 [PMID: 10430915]
  39. BMC Bioinformatics. 2008 Jan 29;9:65 [PMID: 18230160]
  40. PLoS One. 2022 Jul 1;17(7):e0270481 [PMID: 35776745]
  41. Bioinformatics. 2015 Nov 15;31(22):3718-20 [PMID: 26209431]
  42. New Phytol. 2021 Mar;229(5):2470-2491 [PMID: 33113229]
  43. Elife. 2019 Oct 25;8: [PMID: 31650958]
  44. Bioinformatics. 2011 Apr 15;27(8):1164-5 [PMID: 21335321]
  45. Bioinformatics. 2008 Jun 1;24(11):1403-5 [PMID: 18397895]
  46. BMC Bioinformatics. 2004 Aug 19;5:113 [PMID: 15318951]
  47. Environ Microbiol. 2013 Jun;15(6):1870-81 [PMID: 23360621]
  48. Bioinformatics. 2006 Jun 15;22(12):1540-2 [PMID: 16595560]
  49. Nat Ecol Evol. 2018 Jul;2(7):1168-1175 [PMID: 29942019]
  50. Bioinformatics. 2011 Mar 15;27(6):863-4 [PMID: 21278185]
  51. ISME J. 2020 Oct;14(10):2381-2394 [PMID: 32514118]
  52. Mol Biol Evol. 2003 May;20(5):754-61 [PMID: 12679528]
  53. Mycorrhiza. 2022 Nov;32(5-6):373-385 [PMID: 35767052]
  54. PLoS Genet. 2022 Mar 31;18(3):e1010097 [PMID: 35358178]

MeSH Term

Mycorrhizae
Genes, Mating Type, Fungal
Genome, Fungal
Evolution, Molecular
Polymorphism, Single Nucleotide
Glomeromycota
Genetic Variation
Phylogeny
Reproduction, Asexual
Fungi