IFIT3 mediates TBK1 phosphorylation to promote activation of pDCs and exacerbate systemic sclerosis in mice.

Xiangyang Huang, Yi Liu, Xia Rong, Yiheng Zhao, Dan Feng, Jun Wang, Wanhong Xing
Author Information
  1. Xiangyang Huang: Department of Rheumatology and Immunology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China. ORCID
  2. Yi Liu: Department of Communication Sciences & Disorders, MGH Institute of Health Professions, Boston, Massachusetts, USA.
  3. Xia Rong: Department of Rheumatology and Immunology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  4. Yiheng Zhao: Department of Rheumatology and Immunology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  5. Dan Feng: Department of Rheumatology and Immunology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  6. Jun Wang: Department of Rheumatology and Immunology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  7. Wanhong Xing: Department of Cardiothoracic Surgery, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China.

Abstract

OBJECTIVE: To assess the impact of the IFIT3/TBK1 signalling pathway in activating plasmacytoid dendritic cells (pDCs) and its role in the development of SSc.
METHODS: Utilized single-cell RNA sequencing (scRNA-seq) and high-throughput transcriptome RNA sequencing to reveal the differential abundance of pDCs and the role of the key gene IFIT3 in SSc. Conducted in vitro cell experiments to evaluate the effect of IFIT3/TBK1 signalling pathway intervention on pDC activation cytokine release and fibroblast function. Constructed an IFIT3 mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to assess the potential benefits of intervening in the IFIT3/TBK1 signalling pathway on skin and lung fibrosis in the SSc mouse model.
RESULTS: The IFIT3/TBK1 signalling pathway plays a crucial role in activating pDCs, with IFIT3 acting as an upstream regulator of TBK1. Intervention in the IFIT3/TBK1 signalling pathway can inhibit pDC activation cytokine release and impact fibroblast function. The IFIT3 mouse model shows potential benefits of targeting the IFIT3/TBK1 signalling pathway in reducing skin and lung fibrosis in the SSc mouse model.
CONCLUSION: This study provides new insights into potential therapeutic targets for SSc, highlighting the critical role of the IFIT3/TBK1 signalling pathway in SSc development.
HIGHLIGHTS: This study elucidates the pivotal role of plasmacytoid dendritic cells (pDCs) in systemic sclerosis (SSc). This study identified the key regulatory gene involved in systemic sclerosis (SSc) as IFIT3. This study has found that IFIT3 functions as an upstream regulatory factor, activating TBK1. This study provides Evidence of the regulatory effects of the IFIT3/TBK1 pathway on plasmacytoid dendritic cells (pDCs). This study validated the therapeutic potential using the IFIT3 mouse model.

Keywords

References

  1. J Autoimmun. 2016 Dec;75:39-49 [PMID: 27470005]
  2. JHEP Rep. 2021 Jun 24;3(5):100324 [PMID: 34381984]
  3. Viruses. 2023 Jan 25;15(2): [PMID: 36851555]
  4. PLoS One. 2019 Nov 7;14(11):e0224839 [PMID: 31697756]
  5. J Hematol Oncol. 2020 Dec 4;13(1):166 [PMID: 33276803]
  6. Rheumatology (Oxford). 2022 Aug 3;61(8):3491-3496 [PMID: 35022662]
  7. Exp Mol Med. 2022 Sep;54(9):1577-1585 [PMID: 36175484]
  8. J Immunol. 2011 Sep 1;187(5):2559-68 [PMID: 21813773]
  9. Sci Immunol. 2021 Apr 2;6(58): [PMID: 33811059]
  10. Nat Rev Dis Primers. 2020 Aug 13;6(1):68 [PMID: 32792490]
  11. Pediatr Rheumatol Online J. 2021 Jan 22;19(1):9 [PMID: 33482855]
  12. Front Immunol. 2019 Aug 20;10:1861 [PMID: 31481954]
  13. J Invest Dermatol. 2017 May;137(5):1042-1050 [PMID: 28012718]
  14. Theranostics. 2020 Aug 25;10(23):10619-10633 [PMID: 32929370]
  15. Nature. 2023 Mar;615(7950):158-167 [PMID: 36634707]
  16. Nature. 2022 Oct;610(7933):761-767 [PMID: 36261523]
  17. JBI Evid Synth. 2022 Apr 01;20(4):953-968 [PMID: 35102103]
  18. J Exp Med. 2019 Sep 2;216(9):1974-1985 [PMID: 31420375]
  19. Sci Adv. 2021 Jan 1;7(1): [PMID: 33277324]
  20. mBio. 2021 Dec 21;12(6):e0282921 [PMID: 34724821]
  21. Int J Oncol. 2021 Aug;59(2): [PMID: 34195849]
  22. JCI Insight. 2018 May 3;3(9): [PMID: 29720568]
  23. Front Cell Dev Biol. 2022 Feb 08;9:782824 [PMID: 35211476]
  24. Mol Cancer. 2021 Jun 1;20(1):81 [PMID: 34074294]
  25. Rheumatology (Oxford). 2023 Feb 1;62(2):934-945 [PMID: 35686918]
  26. Reumatologia. 2019;57(4):221-233 [PMID: 31548749]
  27. Front Immunol. 2022 Jul 28;13:962393 [PMID: 35967341]
  28. FEBS Lett. 2013 Mar 18;587(6):542-8 [PMID: 23395611]
  29. Biology (Basel). 2023 Feb 10;12(2): [PMID: 36829561]
  30. N Engl J Med. 2021 Jan 21;384(3):252-260 [PMID: 33283989]
  31. Acta Pharm Sin B. 2021 Oct;11(10):2983-2994 [PMID: 34729299]
  32. Nat Rev Immunol. 2015 Aug;15(8):471-85 [PMID: 26160613]
  33. Lancet. 2017 Oct 7;390(10103):1685-1699 [PMID: 28413064]
  34. J Am Acad Dermatol. 2022 Nov;87(5):937-954 [PMID: 35131402]
  35. Autoimmun Rev. 2021 Mar;20(3):102755 [PMID: 33476823]
  36. J Med Virol. 2023 Jan;95(1):e28259 [PMID: 36305096]
  37. Blood. 2021 Dec 9;138(23):2408-2424 [PMID: 34324649]
  38. Am J Respir Crit Care Med. 2023 Jan 15;207(2):160-172 [PMID: 35984444]
  39. Cancer Cell. 2019 Oct 14;36(4):418-430.e6 [PMID: 31588021]
  40. Int J Mol Sci. 2021 Nov 24;22(23): [PMID: 34884484]
  41. Cell Death Dis. 2021 Jan 4;12(1):29 [PMID: 33414399]
  42. Cell Death Dis. 2022 May 4;13(5):435 [PMID: 35508454]
  43. Clin Rev Allergy Immunol. 2020 Feb;58(1):40-51 [PMID: 30607749]
  44. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  45. Int Immunopharmacol. 2023 May;118:110043 [PMID: 36965369]
  46. Mol Cancer. 2022 Feb 21;21(1):57 [PMID: 35189910]
  47. Front Med (Lausanne). 2023 Sep 27;10:1264906 [PMID: 37828949]
  48. Cell Death Dis. 2022 May 2;13(5):424 [PMID: 35501324]
  49. Arthritis Res Ther. 2019 Jun 24;21(1):153 [PMID: 31234900]
  50. Front Immunol. 2022 Jul 26;13:938837 [PMID: 35958619]
  51. Int J Gen Med. 2022 Apr 26;15:4391-4398 [PMID: 35502184]
  52. J Biol Chem. 2011 Jun 24;286(25):22035-46 [PMID: 21531721]
  53. Gene. 2020 Apr 5;733:144242 [PMID: 31743770]
  54. J Autoimmun. 2018 Jul;91:97-102 [PMID: 29673738]
  55. JCI Insight. 2023 May 22;8(10): [PMID: 37071484]
  56. Sci Rep. 2022 Jan 7;12(1):159 [PMID: 34997010]
  57. J Autoimmun. 2020 Sep;113:102526 [PMID: 32713676]
  58. Gastroenterol Hepatol. 2021 Aug-Sep;44(7):519-535 [PMID: 33652061]
  59. Aging (Albany NY). 2021 Sep 15;13(18):22164-22175 [PMID: 34526411]
  60. Science. 2022 Oct 7;378(6615):94-99 [PMID: 36201573]
  61. Cell Death Dis. 2021 Mar 11;12(3):260 [PMID: 33707417]
  62. Mol Ther. 2012 Jul;20(7):1338-48 [PMID: 22434134]
  63. Cells. 2022 Jun 10;11(12): [PMID: 35741015]
  64. J Cell Biochem. 2017 Aug;118(8):2380-2386 [PMID: 28106276]
  65. Mediators Inflamm. 2020 Jun 17;2020:1231243 [PMID: 32617074]
  66. Nat Rev Rheumatol. 2021 Apr;17(4):189 [PMID: 33686280]
  67. Mol Cell Probes. 2018 Feb;37:32-38 [PMID: 29129659]
  68. Nature. 2019 Oct;574(7779):553-558 [PMID: 31645721]
  69. J Exp Med. 2022 Nov 7;219(11): [PMID: 36053251]
  70. Nat Rev Rheumatol. 2022 Dec;18(12):683-693 [PMID: 36352098]
  71. Acta Pharm Sin B. 2022 Jan;12(1):50-75 [PMID: 35127372]
  72. Cell. 2022 Nov 10;185(23):4317-4332.e15 [PMID: 36302380]

Grants

  1. 81871298/National Natural Science Foundation of China

MeSH Term

Animals
Female
Male
Mice
Dendritic Cells
Disease Models, Animal
Mice, Knockout
Phosphorylation
Protein Serine-Threonine Kinases
Scleroderma, Systemic
Signal Transduction

Chemicals

Protein Serine-Threonine Kinases
Tbk1 protein, mouse
Ifit3 protein, mouse

Word Cloud

Similar Articles

Cited By