Expanding the horizon of continuous glucose monitoring into the future of pediatric medicine.

Lourdes Morales-Dopico, Sarah A MacLeish
Author Information
  1. Lourdes Morales-Dopico: Pediatric Endocrinology Fellow, CWRU School of Medicine, University Hospitals Cleveland Medical Center, Rainbow Babies and Children's Hospital, Cleveland, OH, USA. Lourdes.Morales-Dopico@uhhospitals.org.
  2. Sarah A MacLeish: Associate Professor of Pediatrics, Pediatric Endocrinology, CWRU School of Medicine, University Hospitals Cleveland Medical Center, Rainbow Babies and Children's Hospital, Cleveland, OH, USA.

Abstract

Glucose monitoring has rapidly evolved with the development of minimally invasive continuous glucose monitoring (CGM) using interstitial fluid. It is recommended as standard of care in the ambulatory setting, nearly replacing capillary glucose testing in those with access to CGM. The newest CGM devices continue to be smaller and more accurate, and integration with automated insulin delivery systems has further revolutionized the management of diabetes, leading to successful improvements in care and quality of life. Many studies confirm accuracy and application of CGM in various adult inpatient settings. Studies in adult patients increased during the COVID 19 Pandemic, but despite reassuring results, inpatient CGM use is not yet approved by the FDA. There is a lack of studies in inpatient pediatric settings, although data from the NICU and PICU have started to emerge. Given the exponential increase in the use of CGM, it is imperative that hospitals develop protocols for CGM use, with a need for ongoing implementation research. In this review we describe how CGM systems work, discuss benefits and barriers, summarize research in inpatient pediatric CGM use, explore gaps in research design along with emerging recommendations for inpatient use, and discuss overall CGM utility beyond outpatient diabetes management. IMPACT: Current CGM systems allow for uninterrupted monitoring of interstitial glucose excursions, and have triggered multiple innovations including automated insulin delivery. CGM technology has become part of standard of care for outpatient diabetes management, endorsed by many international medical societies, now with significant uptake, replacing capillary glucose testing for daily management in patients with access to CGM technology. Although CGM is not approved by the FDA for inpatient hospital use, studies in adult settings support its use in hospitals. More studies are needed for pediatrics. Implementation research is paramount to expand the role of CGM in the inpatient setting and beyond.

References

  1. Diabetes Technol Ther. 2012 Mar;14(3):225-31 [PMID: 22145851]
  2. Diabetes Technol Ther. 2024 Feb;26(2):119-124 [PMID: 38194229]
  3. JAMA. 2020 Jun 16;323(23):2388-2396 [PMID: 32543683]
  4. Pediatrics. 2006 Sep;118(3):1176-84 [PMID: 16951013]
  5. Diabetes Metab Res Rev. 2001 Mar-Apr;17(2):113-23 [PMID: 11307176]
  6. Endocr Connect. 2023 Sep 25;12(10): [PMID: 37578799]
  7. Diabetes Technol Ther. 2022 Jun;24(6):373-380 [PMID: 35157505]
  8. JAMA Pediatr. 2017 Oct 1;171(10):972-983 [PMID: 28783802]
  9. Diabetes Care. 1987 Sep-Oct;10(5):622-8 [PMID: 3677983]
  10. J Clin Transl Endocrinol. 2021 Dec 04;27:100282 [PMID: 34917483]
  11. J Diabetes Sci Technol. 2010 Mar 01;4(2):496 [PMID: 20307413]
  12. N Engl J Med. 2019 Oct 31;381(18):1707-1717 [PMID: 31618560]
  13. J Diabetes Sci Technol. 2023 Sep;17(5):1392-1418 [PMID: 37559371]
  14. Diabet Med. 2023 Aug;40(8):e15120 [PMID: 37083018]
  15. J Diabetes Sci Technol. 2016 May;10(3):633-639 [PMID: 26961974]
  16. Chem Soc Rev. 2020 Nov 7;49(21):7671-7709 [PMID: 33020790]
  17. Diabetes Technol Ther. 2000 Spring;2(1):49-56 [PMID: 11467320]
  18. J Diabetes Sci Technol. 2024 Jul;18(4):899-903 [PMID: 36416103]
  19. J Clin Anesth. 2023 Aug;87:111090 [PMID: 36913777]
  20. Diabetes Care. 2023 Apr 1;46(4):864-867 [PMID: 36809308]
  21. Diabetes Care. 2018 Dec;41(12):2641-2643 [PMID: 30377184]
  22. J Pediatr. 2018 Sep;200:104-110.e1 [PMID: 29731360]
  23. N Engl J Med. 2008 Oct 2;359(14):1464-76 [PMID: 18779236]
  24. Biosens Bioelectron. 2021 Jun 1;181:113054 [PMID: 33775474]
  25. Curr Opin Pediatr. 2018 Apr;30(2):204-208 [PMID: 29346140]
  26. Diabetes Care. 2021 Nov;44(11):2589-2625 [PMID: 34593612]
  27. Diabetes Technol Ther. 2015 Nov;17(11):787-94 [PMID: 26171659]
  28. J Pediatr. 2018 Sep;200:261-264.e1 [PMID: 29861315]
  29. J Pediatr Nurs. 2020 Jul - Aug;53:e149-e155 [PMID: 32245681]
  30. J Pediatr Endocrinol Metab. 2017 Jan 1;30(1):27-35 [PMID: 27977404]
  31. Diabetes Care. 2023 Jan 1;46(Suppl 1):S111-S127 [PMID: 36507635]
  32. J Diabetes Sci Technol. 2014 Nov;8(6):1081-90 [PMID: 25355711]
  33. Diabetes Care. 2022 Mar 1;45(3):750-753 [PMID: 35018417]
  34. Front Endocrinol (Lausanne). 2022 Nov 02;13:1016072 [PMID: 36407313]
  35. Diabetes Technol Ther. 2021 Sep;23(S3):S5-S11 [PMID: 34546084]
  36. Pediatr Diabetes. 2022 Dec;23(8):1529-1551 [PMID: 36537524]
  37. Diabetes Technol Ther. 2023 Jun;25(S3):S35-S41 [PMID: 37306447]
  38. Horm Res Paediatr. 2019;92(5):319-327 [PMID: 32208390]
  39. Pediatr Diabetes. 2019 Feb;20(1):93-98 [PMID: 30471084]
  40. Diabet Med. 2011 Sep;28(9):1118-22 [PMID: 21692844]
  41. Arch Dis Child Fetal Neonatal Ed. 2013 Mar;98(2):F136-40 [PMID: 22791467]
  42. Diabetes Care. 2020 Jan;43(1):e1-e2 [PMID: 31672703]
  43. Diabetes Care. 2022 Feb 1;45(2):391-397 [PMID: 34872983]
  44. Diabetes Care. 2013 Apr;36(4):793-800 [PMID: 23172973]
  45. Diabetes Technol Ther. 2016 Aug;18(8):512-6 [PMID: 27472488]
  46. J Crit Care. 2021 Jun;63:218-222 [PMID: 32958351]
  47. Curr Diab Rep. 2023 Jun;23(6):69-87 [PMID: 37052790]
  48. Diabetes Ther. 2021 Jan;12(1):235-246 [PMID: 33165838]
  49. Diabetes Technol Ther. 2018 May;20(5):321-324 [PMID: 29792751]
  50. Diabetes Care. 2020 Nov;43(11):2736-2743 [PMID: 32759361]
  51. J Diabetes Sci Technol. 2015 Aug 04;9(5):1006-15 [PMID: 26243773]
  52. J Diabetes Sci Technol. 2021 May;15(3):684-694 [PMID: 32064909]
  53. Diabetes Care. 2020 Nov;43(11):2730-2735 [PMID: 32641372]
  54. Pediatr Diabetes. 2020 Mar;21(2):310-318 [PMID: 31837064]
  55. J Pediatr Endocrinol Metab. 2004 Mar;17(3):281-8 [PMID: 15112904]
  56. Diabetes Care. 2020 Nov;43(11):2628-2630 [PMID: 32978180]
  57. Clin Chem Lab Med. 2023 Jun 23;62(1):41-49 [PMID: 37349976]
  58. Diabetes Technol Ther. 2019 Feb;21(2):66-72 [PMID: 30657336]
  59. Semin Perinatol. 2021 Apr;45(3):151392 [PMID: 33549333]
  60. J Cyst Fibros. 2018 Nov;17(6):783-790 [PMID: 29580828]
  61. Nanomaterials (Basel). 2022 Mar 25;12(7): [PMID: 35407200]
  62. Diabetes Technol Ther. 2009 Jun;11 Suppl 1:S11-6 [PMID: 19469670]
  63. Biosens Bioelectron. 2023 Apr 1;225:115103 [PMID: 36724658]
  64. Diabetes Care. 2020 Jan;43(Suppl 1):S77-S88 [PMID: 31862750]
  65. Diabetes Technol Ther. 2024 Sep;26(9):626-632 [PMID: 38441904]
  66. Diabetes Technol Ther. 2022 Mar;24(3):178-189 [PMID: 34694909]
  67. J Diabetes Complications. 2021 Aug;35(8):107929 [PMID: 33902999]
  68. Diabetol Metab Syndr. 2023 Nov 25;15(1):242 [PMID: 38001509]
  69. J Diabetes Sci Technol. 2023 Nov;17(6):1506-1526 [PMID: 37599389]
  70. Lancet Child Adolesc Health. 2021 Apr;5(4):265-273 [PMID: 33577770]
  71. Int J Pediatr Endocrinol. 2018;2018:3 [PMID: 29599801]
  72. J Diabetes Sci Technol. 2010 Jan 01;4(1):111-8 [PMID: 20167174]
  73. Clin Diabetes. 2024 Winter;42(1):27-33 [PMID: 38230344]
  74. Diabetes Care. 2020 Nov;43(11):2873-2877 [PMID: 32855160]
  75. J Clin Endocrinol Metab. 2019 Aug 1;104(8):3337-3344 [PMID: 30844073]
  76. Pediatrics. 2017 Oct;140(4): [PMID: 28916591]
  77. Diabetes Care. 2024 Jan 1;47(Suppl 1):S295-S306 [PMID: 38078585]
  78. J Diabetes Sci Technol. 2022 Mar;16(2):271-274 [PMID: 34911382]
  79. J Perinat Med. 2020 Jul 28;48(6):631-637 [PMID: 32432567]
  80. Diabetes Obes Metab. 2023 Sep;25(9):2704-2713 [PMID: 37334522]
  81. Diabetes Care. 2021 Jul;44(7):1630-1640 [PMID: 34099518]
  82. Diabetes Technol Ther. 2018 Mar;20(3):197-206 [PMID: 29381090]
  83. Pediatr Crit Care Med. 2010 May;11(3):415-9 [PMID: 19924024]
  84. Diabetes Technol Ther. 2020 Sep;22(9):658-665 [PMID: 31800294]

MeSH Term

Humans
Blood Glucose
Blood Glucose Self-Monitoring
Child
Pediatrics
COVID-19
Diabetes Mellitus, Type 1
Insulin Infusion Systems
SARS-CoV-2
Continuous Glucose Monitoring

Chemicals

Blood Glucose

Word Cloud

Created with Highcharts 10.0.0CGMinpatientuseglucosemonitoringmanagementstudiesresearchcaresystemsdiabetesadultsettingspediatriccontinuousinterstitialstandardsettingreplacingcapillarytestingaccessautomatedinsulindeliverypatientsapprovedFDAhospitalsdiscussbeyondoutpatienttechnologyGlucoserapidlyevolveddevelopmentminimallyinvasiveusingfluidrecommendedambulatorynearlynewestdevicescontinuesmalleraccurateintegrationrevolutionizedleadingsuccessfulimprovementsqualitylifeManyconfirmaccuracyapplicationvariousStudiesincreasedCOVID19PandemicdespitereassuringresultsyetlackalthoughdataNICUPICUstartedemergeGivenexponentialincreaseimperativedevelopprotocolsneedongoingimplementationreviewdescribeworkbenefitsbarrierssummarizeexploregapsdesignalongemergingrecommendationsoverallutilityIMPACT:CurrentallowuninterruptedexcursionstriggeredmultipleinnovationsincludingbecomepartendorsedmanyinternationalmedicalsocietiesnowsignificantuptakedailyAlthoughhospitalsupportneededpediatricsImplementationparamountexpandroleExpandinghorizonfuturemedicine

Similar Articles

Cited By

No available data.