In Vitro Synergistic Activity of Rifampicin Combined with Minimal Effective Antibiotic Concentration (MEAC) of Polymyxin B Against Extensively Drug-Resistant, Carbapenem-, and Polymyxin B-Resistant Klebsiella pneumoniae Clinical Isolates.

Nathália Abichabki, Gilberto Gambero Gaspar, Luísa Vieira Zacharias, Renata Helena Cândido Pocente, Denissani Aparecida Ferrari Santos Lima, Natália Augusta Barbosa de Freitas, Guilherme Thomaz Pereira Brancini, Natália Columbaro Moreira, Gilberto Úbida Leite Braga, Fernando Bellissimo-Rodrigues, Valdes Roberto Bollela, Ana Lúcia Costa Darini, Leonardo Neves Andrade
Author Information
  1. Nathália Abichabki: School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
  2. Gilberto Gambero Gaspar: Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Av. Bandeirantes, 3900, Campus da USP - Cidade Universitária, Ribeirão Preto, SP, 14040-900, Brazil.
  3. Luísa Vieira Zacharias: School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
  4. Renata Helena Cândido Pocente: University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil.
  5. Denissani Aparecida Ferrari Santos Lima: University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil.
  6. Natália Augusta Barbosa de Freitas: University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil.
  7. Guilherme Thomaz Pereira Brancini: School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
  8. Natália Columbaro Moreira: School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
  9. Gilberto Úbida Leite Braga: Department of Clinical Analyses, Toxicology and Food Science (DACTB), School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
  10. Fernando Bellissimo-Rodrigues: Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Av. Bandeirantes, 3900, Campus da USP - Cidade Universitária, Ribeirão Preto, SP, 14040-900, Brazil.
  11. Valdes Roberto Bollela: Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Av. Bandeirantes, 3900, Campus da USP - Cidade Universitária, Ribeirão Preto, SP, 14040-900, Brazil.
  12. Ana Lúcia Costa Darini: Department of Clinical Analyses, Toxicology and Food Science (DACTB), School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
  13. Leonardo Neves Andrade: Department of Clinical Analyses, Toxicology and Food Science (DACTB), School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil. leonardo@fcfrp.usp.br. ORCID

Abstract

We investigated the in vitro antibacterial activity of the combination rifampicin (RIF) + polymyxin B (PB) against extensively drug-resistant (XDR) Klebsiella pneumoniae isolates. We evaluated clinical isolates co-resistant to PB (non-mcr carriers; eptB, mgrB, pmr operon, and ramA mutations) and to carbapenems (KPC, CTX-M, and SHV producers; including KPC + NDM co-producer), belonging to sequence types (ST) ST16, ST11, ST258, ST340, and ST437. We used the standard broth microdilution method to determine RIF and PB minimum inhibitory concentration (MIC) and the checkerboard assay to evaluate the fractional inhibitory concentration index (FICI) of RIF + PB as well as to investigate the lowest concentrations of RIF and PB that combined (RIF + PB) had antibacterial activity. Time-kill assays were performed to evaluate the synergistic effect of the combination against selected isolates. PB MIC (32-256 µg/mL) and RIF MIC (32-1024 µg/mL) were determined. FICI (<0.5) indicated a synergistic effect for all isolates evaluated for the combination RIF + PB. Our results showed that low concentrations of PB (PB minimal effective antibiotic concentration [MEAC], ≤0.25-1 µg/mL) favor RIF (≤0.03-0.125 µg/mL) to reach the bacterial target and exert antibacterial activity against PB-resistant isolates, and the synergistic effect was also observed in time-kill results. The combination of RIF + PB showed in vitro antibacterial activity against XDR, carbapenem-, and PB-resistant K. pneumoniae and could be further studied as a potential combination therapy, with cost-effectiveness and promising efficacy.

References

  1. Rothstein DM (2016) Rifamycins, alone and in combination. Cold Spring Harb Perspect Med 6:a027011. https://doi.org/10.1101/cshperspect.a027011 [DOI: 10.1101/cshperspect.a027011]
  2. World Health Organization (2023) The WHO AWaRe (access watch reserve) antibiotic book. WHO, Geneva
  3. Poirel L, Jayol A, Nordmann P (2017) Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 30:557–596. https://doi.org/10.1128/CMR.00064-16 [DOI: 10.1128/CMR.00064-16]
  4. Karakonstantis S, Kritsotakis EI, Gikas A (2020) Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection 48:835–851 [DOI: 10.1007/s15010-020-01520-6]
  5. Zhu M, Tse MW, Weller J et al (2021) The future of antibiotics begins with discovering new combinations. Ann N Y Acad Sci 1496:82–96 [DOI: 10.1111/nyas.14649]
  6. Sullivan GJ, Delgado NN, Maharjan R, Cain AK (2020) How antibiotics work together: molecular mechanisms behind combination therapy. Curr Opin Microbiol 57:31–40. https://doi.org/10.1016/j.mib.2020.05.012 [DOI: 10.1016/j.mib.2020.05.012]
  7. Baquero F, Coque TM (2014) Widening the spaces of selection: evolution along sublethal antimicrobial gradients. mBio 5. https://doi.org/10.1128/mbio.02270-14 [DOI: 10.1128/mbio.02270-14]
  8. Baquero F, Martínez JL, Lanza VF et al (2021) Evolutionary pathways and trajectories in antibiotic resistance. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00050-19 [DOI: 10.1128/CMR.00050-19]
  9. Andrade LN, Vitali L, Gaspar GG et al (2014) Expansion and evolution of a virulent, extensively drug-resistant (polymyxin B-resistant), QnrS1-, CTX-M-2-, and KPC-2-producing Klebsiella pneumoniae ST11 international high-risk clone. J Clin Microbiol 52:2530–2535. https://doi.org/10.1128/JCM.00088-14 [DOI: 10.1128/JCM.00088-14]
  10. Palmeiro JK, de Souza RF, Schörner MA et al (2019) Molecular epidemiology of multidrug-resistant Klebsiella pneumoniae isolates in a Brazilian tertiary hospital. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01669 [DOI: 10.3389/fmicb.2019.01669]
  11. Gaspar GG, Tamasco G, Abichabki N et al (2022) Nosocomial outbreak of extensively drug-resistant (polymyxin B and carbapenem) Klebsiella pneumoniae in a collapsed university hospital due to COVID-19 pandemic. Antibiotics 11:814. https://doi.org/10.3390/antibiotics11060814 [DOI: 10.3390/antibiotics11060814]
  12. Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x [DOI: 10.1111/j.1469-0691.2011.03570.x]
  13. EUCAST (2023) Antimicrobial susceptibility testing. https://www.eucast.org/ast_of_bacteria/ . Accessed 9 Oct 2023
  14. Foerster S, Desilvestro V, Hathaway LJ et al (2017) A new rapid resazurin-based microdilution assay for antimicrobial susceptibility testing of Neisseria gonorrhoeae. J Antimicrob Chemother 72:1961–1968. https://doi.org/10.1093/jac/dkx113 [DOI: 10.1093/jac/dkx113]
  15. Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1–1. https://doi.org/10.1093/jac/dkg301 [DOI: 10.1093/jac/dkg301]
  16. Abichabki N, Zacharias LV, Moreira NC et al (2022) Potential cannabidiol (CBD) repurposing as antibacterial and promising therapy of CBD plus polymyxin B (PB) against PB-resistant gram-negative bacilli. Sci Rep. https://doi.org/10.1038/s41598-022-10393-8 [DOI: 10.1038/s41598-022-10393-8]
  17. Brennan-Krohn T, Pironti A, Kirby JE (2018) Synergistic activity of colistin-containing combinations against colistin-resistant enterobacteriaceae. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00873-18 [DOI: 10.1128/AAC.00873-18]
  18. Karakonstantis S, Ioannou P, Kofteridis DD (2022) In search for a synergistic combination against pandrug-resistant A. baumannii; methodological considerations. Infection 50:569–581. https://doi.org/10.1007/s15010-021-01748-w [DOI: 10.1007/s15010-021-01748-w]
  19. BrCAST (2023) Tabelas de pontos de corte para interpretação de CIMs e diâmetros de halos - Brazilian Committee on Antimicrobial Susceptibility Testing - BrCAST
  20. MacNair CR, Stokes JM, Carfrae LA et al (2018) Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat Commun. https://doi.org/10.1038/s41467-018-02875-z [DOI: 10.1038/s41467-018-02875-z]
  21. Bassetti M, Repetto E, Righi E et al (2008) Colistin and rifampicin in the treatment of multidrug-resistant Acinetobacter baumannii infections. J Antimicrob Chemother 61:417–420. https://doi.org/10.1093/jac/dkm509 [DOI: 10.1093/jac/dkm509]
  22. Durante-Mangoni E, Signoriello G, Andini R et al (2013) Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 57:349–358. https://doi.org/10.1093/cid/cit253 [DOI: 10.1093/cid/cit253]
  23. Aydemir H, Akduman D, Piskin N et al (2013) Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect 141:1214–1222. https://doi.org/10.1017/S095026881200194X [DOI: 10.1017/S095026881200194X]
  24. Pantopoulou A, Giamarellos-Bourboulis EJ, Raftogannis M et al (2007) Colistin offers prolonged survival in experimental infection by multidrug-resistant Acinetobacter baumannii: the significance of co-administration of rifampicin. Int J Antimicrob Agents 29:51–55. https://doi.org/10.1016/j.ijantimicag.2006.09.009 [DOI: 10.1016/j.ijantimicag.2006.09.009]
  25. Tripodi M-F, Durante-Mangoni E, Fortunato R et al (2007) Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone or in combination against epidemic multidrug-resistant Acinetobacter baumannii isolates producing OXA-58 carbapenemases. Int J Antimicrob Agents 30:537–540. https://doi.org/10.1016/j.ijantimicag.2007.07.007 [DOI: 10.1016/j.ijantimicag.2007.07.007]
  26. Liang W, Liu XF, Huang J et al (2011) Activities of colistin- and minocycline-based combinations against extensive drug resistant Acinetobacter baumannii isolates from intensive care unit patients. BMC Infect Dis. https://doi.org/10.1186/1471-2334-11-109 [DOI: 10.1186/1471-2334-11-109]
  27. Zhao J, Zhu Y, Han ML et al (2023) Model-informed dose optimisation of polymyxin-rifampicin combination therapy against multidrug-resistant Acinetobacter baumannii. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2023.106902 [DOI: 10.1016/j.ijantimicag.2023.106902]
  28. Hong DJ, Kim JO, Lee H et al (2016) In vitro antimicrobial synergy of colistin with rifampicin and carbapenems against colistin-resistant Acinetobacter baumannii clinical isolates. Diagn Microbiol Infect Dis 86:184–189. https://doi.org/10.1016/j.diagmicrobio.2016.07.017 [DOI: 10.1016/j.diagmicrobio.2016.07.017]
  29. Scudeller L, Righi E, Chiamenti M et al (2021) Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant gram-negative bacilli. Int J Antimicrob Agents 57:106344. https://doi.org/10.1016/j.ijantimicag.2021.106344 [DOI: 10.1016/j.ijantimicag.2021.106344]
  30. Lee HJ, Bergen PJ, Bulitta JB et al (2013) Synergistic activity of colistin and rifampin combination against multidrug-resistant Acinetobacter baumannii in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 57:3738–3745. https://doi.org/10.1128/AAC.00703-13 [DOI: 10.1128/AAC.00703-13]
  31. Lagerbäck P, Khine WWT, Giske CG, Tängdén T (2016) Evaluation of antibacterial activities of colistin, rifampicin and meropenem combinations against NDM-1-producing Klebsiella pneumoniae in 24 h in vitro time-kill experiments. J Antimicrob Chemother 71:2321–2325. https://doi.org/10.1093/jac/dkw213 [DOI: 10.1093/jac/dkw213]
  32. Sun L, Sun J, Ding S (2022) In vitro research of combination therapy for multidrug-resistant Klebsiella pneumoniae bloodstream infections. J Int Med Res. https://doi.org/10.1177/03000605221106705 [DOI: 10.1177/03000605221106705]
  33. Wistrand-Yuen P, Olsson A, Skarp K-P et al (2020) Evaluation of polymyxin B in combination with 13 other antibiotics against carbapenemase-producing Klebsiella pneumoniae in time-lapse microscopy and time-kill experiments. Clin Microbiol Infect 26:1214–1221. https://doi.org/10.1016/j.cmi.2020.03.007 [DOI: 10.1016/j.cmi.2020.03.007]
  34. Diep JK, Jacobs DM, Sharma R et al (2017) Polymyxin B in combination with rifampin and meropenem against polymyxin B-resistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02121-16 [DOI: 10.1128/AAC.02121-16]
  35. Tascini C, Tagliaferri E, Giani T et al (2013) Synergistic activity of colistin plus rifampin against colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 57:3990–3993. https://doi.org/10.1128/AAC.00179-13 [DOI: 10.1128/AAC.00179-13]
  36. Pachón-Ibáñez ME, Labrador-Herrera G, Cebrero-Cangueiro T et al (2018) Efficacy of colistin and its combination with rifampin in vitro and in experimental models of infection caused by carbapenemase-producing clinical isolates of Klebsiella pneumoniae. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00912 [DOI: 10.3389/fmicb.2018.00912]
  37. Tängdén T, Hickman RA, Forsberg P et al (2014) Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-Producing Klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob Agents Chemother 58:1757–1762. https://doi.org/10.1128/AAC.00741-13 [DOI: 10.1128/AAC.00741-13]
  38. Wasserman S, Davis A, Stek C et al (2021) Plasma pharmacokinetics of high-dose oral versus intravenous rifampicin in patients with tuberculous meningitis: a randomized controlled trial. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00140-21 [DOI: 10.1128/AAC.00140-21]
  39. Liu T, Zhou J, Liu X, Xu X (2024) Comparative study of colistin methanesulfonate and colistin sulfate/polymyxin B in the treatment of ceftazidime-avibactam resistant gram-negative bacilli infections. Intell Pharm. https://doi.org/10.1016/j.ipha.2024.01.004 [DOI: 10.1016/j.ipha.2024.01.004]
  40. Vieceli T, Henrique LR, Rech TH, Zavascki AP (2024) Colistin versus polymyxin B for the treatment of carbapenem-resistant Klebsiella pneumoniae bloodstream infections. J Infect Chemother. https://doi.org/10.1016/j.jiac.2024.01.012 [DOI: 10.1016/j.jiac.2024.01.012]

Grants

  1. 406192/2023-5/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  2. 140875/2024-7/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  3. INCT - MCTI/CNPq/CAPES/FAPs nº 16/2014/Instituto Nacional de Pesquisas em Resistência a Antimicrobianos
  4. INCT - MCTI/CNPq/CAPES/FAPs nº 16/2014/Instituto Nacional de Pesquisas em Resistência a Antimicrobianos
  5. 88887.670254/2022-0/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  6. 8887.716776/2022-00/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

MeSH Term

Polymyxin B
Rifampin
Klebsiella pneumoniae
Microbial Sensitivity Tests
Anti-Bacterial Agents
Drug Synergism
Humans
Carbapenems
Drug Resistance, Multiple, Bacterial
Klebsiella Infections

Chemicals

Polymyxin B
Rifampin
Anti-Bacterial Agents
Carbapenems

Word Cloud

Created with Highcharts 10.0.0PBcombinationRIFisolatesantibacterialactivityRIF + PBpneumoniaeconcentrationMICsynergisticeffectvitroBXDRKlebsiellaevaluatedinhibitoryevaluateFICIconcentrationsresultsshowedPB-resistantPolymyxininvestigatedrifampicin + polymyxinextensivelydrug-resistantclinicalco-resistantnon-mcrcarrierseptBmgrBpmroperonramAmutationscarbapenemsKPCCTX-MSHVproducersincludingKPC + NDMco-producerbelongingsequencetypesSTST16ST11ST258ST340ST437usedstandardbrothmicrodilutionmethoddetermineminimumcheckerboardassayfractionalindexwellinvestigatelowestcombinedTime-killassaysperformedselected32-256 µg/mL32-1024 µg/mLdetermined<05indicatedlowminimaleffectiveantibiotic[MEAC] ≤025-1 µg/mLfavor≤003-0125 µg/mLreachbacterialtargetexertalsoobservedtime-killcarbapenem-Kstudiedpotentialtherapycost-effectivenesspromisingefficacyVitroSynergisticActivityRifampicinCombinedMinimalEffectiveAntibioticConcentrationMEACExtensivelyDrug-ResistantCarbapenem-B-ResistantClinicalIsolates

Similar Articles

Cited By