Strengthening global health resilience: Marburg virus-like particle vaccines and the One Health approach.

Ram Bahadur Khadka, Khimdhoj Karki, Jitendra Pandey, Rabin Gyawali, Gautam Prasad Chaudhary
Author Information
  1. Ram Bahadur Khadka: Department of Laboratory Science, Crimson College of Technology, Affiliated with Pokhara University, Butwal-11, Devinagar, Rupandehi 32907, Nepal.
  2. Khimdhoj Karki: Department of Laboratory Science, Crimson College of Technology, Affiliated with Pokhara University, Butwal-11, Devinagar, Rupandehi 32907, Nepal.
  3. Jitendra Pandey: Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, USA.
  4. Rabin Gyawali: Padmodaya Campus, Affiliated to Tribhuwan University, Dang 21906, Nepal.
  5. Gautam Prasad Chaudhary: Department of Pharmacy, Crimson College of Technology, Affiliated with Pokhara University, Butwal-11, Devinagar, Rupandehi 32907, Nepal.

Abstract

The Marburg virus (MARV), belonging to the family, poses a significant global health threat, emphasizing the urgency to develop Marburg virus-like particle (VLP) vaccines for outbreak mitigation. The virus's menacing traits accentuate the need for such vaccines, which can be addressed by VLPs that mimic its structure safely, potentially overcoming past limitations. Early Marburg vaccine endeavors and their challenges are examined in the historical perspectives section, followed by an exploration of VLPs as transformative tools, capable of eliciting immune responses without conventional risks. Noteworthy milestones and achievements in Marburg VLP vaccine development, seen through preclinical and clinical trials, indicate potential cross-protection. Ongoing challenges, encompassing durability, strain diversity, and equitable distribution, are addressed, with proposed innovations like novel adjuvant, mRNA technology, and structure-based design poised to enhance Marburg VLP vaccines. This review highlights the transformative potential of Marburg VLPs in countering the virus, showcasing global collaboration, regulatory roles, and health equity for a safer future through the harmonious interplay of science, regulation, and global efforts.

Keywords

References

  1. Antiviral Res. 2013 Dec;100(3):605-14 [PMID: 24121034]
  2. Hum Vaccin Immunother. 2018;14(9):2107-2113 [PMID: 29757706]
  3. Vaccines (Basel). 2023 Jan 26;11(2): [PMID: 36851146]
  4. BMC Public Health. 2010 Dec 03;10 Suppl 1:S2 [PMID: 21143824]
  5. Vaccines (Basel). 2022 Feb 26;10(3): [PMID: 35335000]
  6. Biol Cell. 2023 Jan;115(1):e2200059 [PMID: 36192136]
  7. PLoS One. 2018 Feb 20;13(2):e0192312 [PMID: 29462200]
  8. Annu Rev Virol. 2015 Nov;2(1):599-618 [PMID: 26958930]
  9. Clin Trials. 2022 Dec;19(6):647-654 [PMID: 35866633]
  10. Int J Surg. 2023 Aug 01;109(8):2539-2541 [PMID: 37204465]
  11. Front Med (Lausanne). 2023 Jan 19;9:1109541 [PMID: 36743666]
  12. PLoS Negl Trop Dis. 2022 May 27;16(5):e0010433 [PMID: 35622847]
  13. Int J Surg. 2023 Feb 01;109(2):165-166 [PMID: 36799839]
  14. J Mol Biol. 2023 Aug 1;435(15):168173 [PMID: 37301278]
  15. J Infect Dis. 2002 Jul 1;186(1):118-22 [PMID: 12089672]
  16. Viruses. 2014 Apr 17;6(4):1759-88 [PMID: 24747773]
  17. PLoS One. 2019 Mar 19;14(3):e0213837 [PMID: 30889198]
  18. Viruses. 2018 Dec 08;10(12): [PMID: 30544818]
  19. Microorganisms. 2023 Jan 18;11(2): [PMID: 36838210]
  20. Hastings Cent Rep. 2023 Sep;53 Suppl 2:S60-S68 [PMID: 37963051]
  21. Vaccines (Basel). 2022 Jun 23;10(7): [PMID: 35891170]
  22. Signal Transduct Target Ther. 2023 Apr 7;8(1):149 [PMID: 37029123]
  23. Viruses. 2020 Nov 18;12(11): [PMID: 33218001]
  24. PLoS Pathog. 2022 Oct 13;18(10):e1010805 [PMID: 36227853]
  25. Emerg Infect Dis. 2009 Aug;15(8):1171-5 [PMID: 19751577]
  26. Viruses. 2023 Jan 04;15(1): [PMID: 36680198]
  27. Viruses. 2023 Aug 11;15(8): [PMID: 37632063]
  28. Viruses. 2012 Dec;4(12):3647-64 [PMID: 23342373]
  29. Pharmaceutics. 2023 May 19;15(5): [PMID: 37242780]
  30. Lancet. 2015 May 9;385(9980):1884-901 [PMID: 25987157]
  31. Sci Transl Med. 2022 Dec 14;14(675):eabq6364 [PMID: 36516269]
  32. J Educ Health Promot. 2022 Sep 28;11:314 [PMID: 36439002]
  33. Front Immunol. 2021 Aug 18;12:703986 [PMID: 34484200]
  34. Virus Genes. 2017 Aug;53(4):501-515 [PMID: 28447193]
  35. Nat Rev Microbiol. 2015 Aug;13(8):461-9 [PMID: 26052667]
  36. Viruses. 2012 Oct 01;4(10):1878-927 [PMID: 23202446]
  37. BMJ Glob Health. 2019 Feb 7;4(Suppl 2):e001112 [PMID: 30899573]
  38. Curr Drug Targets. 2023;24(5):380-381 [PMID: 36788691]
  39. Bull Natl Res Cent. 2023;47(1):10 [PMID: 36721499]
  40. Cureus. 2023 Jul 17;15(7):e42014 [PMID: 37593293]

Word Cloud

Created with Highcharts 10.0.0MarburgglobalvaccinesvirushealthparticleVLPVLPsvaccinevirus-likeaddressedchallengestransformativepotentialmRNAtechnologycollaborationMARVbelongingfamilyposessignificantthreatemphasizingurgencydevelopoutbreakmitigationvirus'smenacingtraitsaccentuateneedcanmimicstructuresafelypotentiallyovercomingpastlimitationsEarlyendeavorsexaminedhistoricalperspectivessectionfollowedexplorationtoolscapableelicitingimmuneresponseswithoutconventionalrisksNoteworthymilestonesachievementsdevelopmentseenpreclinicalclinicaltrialsindicatecross-protectionOngoingencompassingdurabilitystraindiversityequitabledistributionproposedinnovationslikenoveladjuvantstructure-baseddesignpoisedenhancereviewhighlightscounteringshowcasingregulatoryrolesequitysaferfutureharmoniousinterplayscienceregulationeffortsStrengtheningresilience:OneHealthapproachCross-protectionGlobalVirus-like

Similar Articles

Cited By

No available data.