Lentiviral vectors for precise expression to treat X-linked lymphoproliferative disease.

Paul G Ayoub, Julia Gensheimer, Lindsay Lathrop, Colin Juett, Jason Quintos, Kevin Tam, Jack Reid, Feiyang Ma, Curtis Tam, Grace E McAuley, Devin Brown, Xiaomeng Wu, Ruixue Zhang, Kathryn Bradford, Roger P Hollis, Gay M Crooks, Donald B Kohn
Author Information
  1. Paul G Ayoub: Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  2. Julia Gensheimer: David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  3. Lindsay Lathrop: Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  4. Colin Juett: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  5. Jason Quintos: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  6. Kevin Tam: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  7. Jack Reid: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  8. Feiyang Ma: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  9. Curtis Tam: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  10. Grace E McAuley: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  11. Devin Brown: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  12. Xiaomeng Wu: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  13. Ruixue Zhang: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  14. Kathryn Bradford: David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  15. Roger P Hollis: Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  16. Gay M Crooks: David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  17. Donald B Kohn: Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Abstract

X-linked lymphoproliferative disease (XLP1) results from gene mutations affecting the SLAM-associated protein (SAP). A regulated lentiviral vector (LV), XLP-SMART LV, designed to express SAP at therapeutic levels in T, NK, and NKT cells, is crucial for effective gene therapy. We experimentally identified 34 genomic regulatory elements of the gene and designed XLP-SMART LVs to emulate the lineage and stage-specific control of SAP. We screened them for their on-target enhancer activity in T, NK, and NKT cells and their off-target enhancer activity in B cell and myeloid populations. In combination, three enhancer elements increased SAP promoter expression up to 4-fold in on-target populations . NSG-Tg(Hu-IL15) xenograft studies with XLP-SMART LVs demonstrated up to 7-fold greater expression in on-target cells over a control EFS-LV, with no off-target expression. The XLP-SMART LVs exhibited stage-specific T and NK cell expression in peripheral blood, bone marrow, spleen, and thymic tissues (mimicking expression patterns of SAP). Transduction of XLP1 patient CD8+ T cells or BM CD34+ cells with XLP-SMART LVs restored restimulation-induced cell death and NK cytotoxicity to wild-type levels, respectively. These data demonstrate that it is feasible to create a lineage and stage-specific LV to restore the XLP1 phenotype by gene therapy.

Keywords

References

  1. Front Immunol. 2021 Aug 26;12:728082 [PMID: 34512660]
  2. Front Immunol. 2022 Aug 12;13:975803 [PMID: 36032092]
  3. FASEB J. 2022 Sep;36(9):e22476 [PMID: 35959876]
  4. Blood. 2005 Jun 1;105(11):4383-9 [PMID: 15677558]
  5. BMC Cancer. 2023 Oct 19;23(1):1005 [PMID: 37858067]
  6. Nat Immunol. 2001 Aug;2(8):681-90 [PMID: 11477403]
  7. J Exp Med. 2000 Aug 7;192(3):337-46 [PMID: 10934222]
  8. J Virol Methods. 2011 Oct;177(1):1-9 [PMID: 21784103]
  9. Stem Cell Res Ther. 2018 Dec 7;9(1):340 [PMID: 30526668]
  10. Viruses. 2021 Aug 02;13(8): [PMID: 34452394]
  11. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W526-31 [PMID: 15980527]
  12. Cell Stem Cell. 2019 Mar 7;24(3):376-389.e8 [PMID: 30661959]
  13. Mol Immunol. 2000 Jun;37(9):493-501 [PMID: 11163399]
  14. Annu Rev Immunol. 2007;25:337-79 [PMID: 17201683]
  15. Nat Genet. 2021 Jun;53(6):895-905 [PMID: 33846636]
  16. Bio Protoc. 2022 Feb 20;12(4):e4326 [PMID: 35340300]
  17. Database (Oxford). 2017 Jan 1;2017: [PMID: 28605766]
  18. Mol Ther Oncolytics. 2021 Nov 20;23:582-592 [PMID: 34938858]
  19. J Biol Chem. 2002 Apr 12;277(15):13331-7 [PMID: 11815622]
  20. J Vis Exp. 2017 Aug 9;(126): [PMID: 28829424]
  21. Mol Ther. 2011 Jan;19(1):122-32 [PMID: 20978475]
  22. Front Genet. 2020 Oct 16;11:588602 [PMID: 33193725]
  23. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1273-8 [PMID: 18212118]
  24. Int Rev Immunol. 2014 Mar;33(2):129-45 [PMID: 24354325]
  25. Front Immunol. 2021 Apr 16;12:654839 [PMID: 33936082]
  26. J Clin Invest. 2005 Apr;115(4):1049-59 [PMID: 15761493]
  27. PLoS One. 2012;7(5):e36852 [PMID: 22615825]
  28. Syst Synth Biol. 2010 Sep;4(3):215-25 [PMID: 21189842]
  29. Blood. 2013 Feb 14;121(7):1073-6 [PMID: 23223356]
  30. Blood. 2023 Mar 2;141(9):1007-1022 [PMID: 36332160]
  31. Front Immunol. 2019 Feb 20;10:228 [PMID: 30842770]
  32. Nature. 2003 Jan 16;421(6920):282-7 [PMID: 12529646]
  33. Nat Methods. 2017 May;14(5):521-530 [PMID: 28369043]
  34. Oncoimmunology. 2014 Apr 09;3:e28329 [PMID: 25050206]
  35. J Leukoc Biol. 2007 Sep;82(3):594-602 [PMID: 17595380]
  36. Blood. 2004 May 15;103(10):3821-7 [PMID: 14726378]
  37. Blood. 2011 Jan 6;117(1):53-62 [PMID: 20926771]
  38. J Clin Invest. 1983 Jun;71(6):1765-78 [PMID: 6306053]
  39. Bone Marrow Transplant. 2005 Jul;36(2):99-105 [PMID: 15908972]
  40. Clin Immunol. 2010 Apr;135(1):84-98 [PMID: 20096637]
  41. Cell Immunol. 2018 May;327:54-61 [PMID: 29454648]
  42. Mol Ther. 2020 Jan 8;28(1):328-340 [PMID: 31628051]
  43. Front Genome Ed. 2022 May 23;4:828489 [PMID: 35677600]
  44. Adv Exp Med Biol. 2018;1044:15-25 [PMID: 29956288]
  45. Nature. 2008 Oct 9;455(7214):764-9 [PMID: 18843362]
  46. J Allergy Clin Immunol. 2018 Jul;142(1):235-245.e6 [PMID: 29705247]
  47. J Clin Invest. 2009 Oct;119(10):2976-89 [PMID: 19759517]
  48. PLoS Biol. 2011 Nov;9(11):e1001187 [PMID: 22069374]
  49. Nat Genet. 1998 Oct;20(2):129-35 [PMID: 9771704]
  50. Nature. 1998 Oct 1;395(6701):462-9 [PMID: 9774102]
  51. Int J Mol Sci. 2020 Aug 28;21(17): [PMID: 32872311]
  52. Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11966-71 [PMID: 19570996]
  53. J Virol. 1998 Dec;72(12):9873-80 [PMID: 9811723]
  54. J Neurosci Rural Pract. 2014 Apr;5(2):171-4 [PMID: 24966560]
  55. Front Immunol. 2022 Oct 27;13:1001263 [PMID: 36389770]
  56. Anal Chem. 2011 Nov 15;83(22):8604-10 [PMID: 22035192]
  57. Genes Dev. 2018 Feb 1;32(3-4):202-223 [PMID: 29491135]

Word Cloud

Created with Highcharts 10.0.0SAPexpressiongeneXLP-SMARTNKcellsLVsenhancercellXLP1LVTtherapystage-specificon-targetX-linkedlymphoproliferativediseaseregulatedlentiviralvectordesignedlevelsNKTelementslineagecontrolactivityoff-targetpopulationsresultsmutationsaffectingSLAM-associatedproteinexpresstherapeuticcrucialeffectiveexperimentallyidentified34genomicregulatoryemulatescreenedBmyeloidcombinationthreeincreasedpromoter4-foldNSG-TgHu-IL15xenograftstudiesdemonstrated7-foldgreaterEFS-LVexhibitedperipheralbloodbonemarrowspleenthymictissuesmimickingpatternsTransductionpatientCD8+T cellsBMCD34+restoredrestimulation-induceddeathcytotoxicitywild-typerespectivelydatademonstratefeasiblecreaterestorephenotypeLentiviralvectorsprecisetreatHSCSH2D1AXLPstem

Similar Articles

Cited By