Application of microvascular ultrasound-assisted thyroid imaging report and data system in thyroid nodule risk stratification.

Guangrong Ma, Libin Chen, Yong Wang, Zhiyan Luo, Yiqing Zeng, Xue Wang, Zhan Shi, Tao Zhang, Yurong Hong, Pintong Huang
Author Information
  1. Guangrong Ma: Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.
  2. Libin Chen: Department of Ultrasound in Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, P.R. China.
  3. Yong Wang: Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, P.R. China.
  4. Zhiyan Luo: Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.
  5. Yiqing Zeng: Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.
  6. Xue Wang: Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.
  7. Zhan Shi: Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.
  8. Tao Zhang: Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China. zhangtao-us@zju.edu.cn. ORCID
  9. Yurong Hong: Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China. hongyurong@zju.edu.cn.
  10. Pintong Huang: Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China. huangpintong@zju.edu.cn.

Abstract

OBJECTIVES: To establish superb microvascular imaging (SMI) based thyroid imaging reporting and data system (SMI TI-RADS) for risk stratification of malignancy in thyroid nodules.
METHODS: In total, 471 patients, comprising 643 thyroid nodules, who received conventional ultrasound (US), SMI, and a final diagnosis were extensively analyzed. A qualitative assessment of US features of the nodules was performed followed by univariable and multivariable logistic regression analyses, leading to the construction of the SMI TI-RADS, which was further verified using internal and external validation cohorts.
RESULTS: Among the stand-alone US, predictive factors were the shape and margins of the nodules, echogenicity and echogenic foci, vascularity, extrathyroidal extension, ring-SMI patterns, penetrating vascularity, flow-signal enlarged, and vascularity area ratio. SMI TI-RADS depicted an enhanced area under the receiver operating characteristic curve (AUC) of 0.94 (95% CI: 0.92, 0.96; p < 0.001 relative to other stratification systems), a 79% biopsy yield of malignancy (BYM, 189/240 nodules), and a 21% unnecessary biopsy rate (UBR, 51/240 nodules). In the verification cohorts, we demonstrated AUCs, malignancy biopsy yields, and unnecessary biopsy rates of 0.88 (95% CI: 0.83, 0.94), 79% (59/75 nodules), and 21% (16/75 nodules) for the internal cohort, respectively, and 0.91 (95% CI: 0.85, 0.96), 72% (31/43 nodules), and 28% (12/43 nodules) for the external cohort, respectively.
CONCLUSION: SMI TI-RADS was found to be superior in diagnostic sensitivity, specificity, and efficiency than existing TI-RADSs, showing better stratification of the malignancy risk, and thus decreasing the rate of unnecessary needle biopsy.
CRITICAL RELEVANCE STATEMENT: To develop an imaging and data system based on conventional US and SMI features for stratifying the malignancy risk in thyroid nodules.
KEY POINTS: SMI features could improve thyroid nodule risk stratification. SMI TI-RADS showed superior diagnostic efficiency and accuracy for biopsy guidance. SMI TI-RADS can provide better guidance for clinical diagnosis and treatment of thyroid nodules.

Keywords

References

  1. N Engl J Med. 2016 Aug 18;375(7):614-7 [PMID: 27532827]
  2. Lancet Diabetes Endocrinol. 2021 Jan;9(1):11-12 [PMID: 33220765]
  3. Annu Rev Med. 2022 Jan 27;73:517-528 [PMID: 34416120]
  4. Acad Radiol. 2021 May;28(5):694-703 [PMID: 32418782]
  5. Nat Rev Endocrinol. 2017 Jul;13(7):415-424 [PMID: 28361927]
  6. Cancer Lett. 2024 Jun 28;592:216911 [PMID: 38685450]
  7. Cancer Lett. 2023 Oct 28;575:216402 [PMID: 37741431]
  8. PLoS One. 2022 Jan 18;17(1):e0261521 [PMID: 35041691]
  9. Turk J Med Sci. 2019 Jun 17;49(3):723-729 [PMID: 31203590]
  10. Acad Radiol. 2023 Jan;30(1):14-21 [PMID: 35659854]
  11. Cancer Lett. 2023 Mar 1;556:216074 [PMID: 36682706]
  12. Thyroid. 2017 Nov;27(11):1341-1346 [PMID: 29091573]
  13. Thyroid. 2016 Jan;26(1):1-133 [PMID: 26462967]
  14. Radiol Med. 2020 Apr;125(4):406-415 [PMID: 31970579]
  15. Nat Med. 2003 Jun;9(6):653-60 [PMID: 12778163]
  16. Front Endocrinol (Lausanne). 2022 Oct 25;13:1030143 [PMID: 36387883]
  17. Lancet Diabetes Endocrinol. 2022 Jul;10(7):533-539 [PMID: 35752200]
  18. Angiogenesis. 2023 Aug;26(3):313-347 [PMID: 37060495]
  19. Acad Radiol. 2023 Mar;30(3):403-411 [PMID: 36123231]
  20. Front Endocrinol (Lausanne). 2023 Jun 21;14:1182259 [PMID: 37415660]
  21. JAMA. 2018 Mar 06;319(9):914-924 [PMID: 29509871]
  22. Radiology. 2022 Oct;305(1):149-159 [PMID: 35699576]
  23. IEEE Trans Med Imaging. 2021 Jun;40(6):1646-1660 [PMID: 33651687]
  24. Radiology. 2023 Jun;307(5):e221408 [PMID: 37367448]
  25. Rev Endocr Metab Disord. 2021 Jun;22(2):453-460 [PMID: 32959174]
  26. Lancet. 2023 May 6;401(10387):1531-1544 [PMID: 37023783]
  27. Radiology. 2023 Oct;309(1):e231481 [PMID: 37906014]
  28. Ann Oncol. 2019 Dec 1;30(12):1856-1883 [PMID: 31549998]
  29. Radiology. 2022 Oct;305(1):190-198 [PMID: 35787203]
  30. Acta Ophthalmol. 2019 Nov;97(7):e993-e997 [PMID: 30963731]
  31. J Ultrasound Med. 2005 Jul;24(7):897-904 [PMID: 15972703]
  32. PLoS One. 2021 Jan 7;16(1):e0245035 [PMID: 33411820]
  33. BMJ. 2020 Jan 7;368:l6670 [PMID: 31911452]
  34. Radiology. 2019 Apr;291(1):92-99 [PMID: 30777805]
  35. J Am Coll Radiol. 2017 May;14(5):587-595 [PMID: 28372962]
  36. Endocrine. 2020 Nov;70(2):256-279 [PMID: 32827126]

Grants

  1. 82030048/National Natural Science Foundation of China
  2. 82030048/National Natural Science Foundation of China
  3. 82030048/National Natural Science Foundation of China
  4. 82030048/National Natural Science Foundation of China
  5. 82030048/National Natural Science Foundation of China
  6. 82030048/National Natural Science Foundation of China
  7. 82030048/National Natural Science Foundation of China
  8. LQ24H180004/Natural Science Foundation of Zhejiang Province
  9. 2024KY1089/The General Research Program of Health Commission in Zhejiang Province

Word Cloud

Created with Highcharts 10.0.0nodulesSMI0thyroidTI-RADSbiopsyimagingriskstratificationmalignancyUSdatasystemfeaturesvascularity95%CI:unnecessarymicrovascularbasedconventionaldiagnosisinternalexternalcohortsarea949679%21%ratecohortrespectivelysuperiordiagnosticefficiencybetternoduleguidanceThyroidOBJECTIVES:establishsuperbreportingMETHODS:total471patientscomprising643receivedultrasoundfinalextensivelyanalyzedqualitativeassessmentperformedfollowedunivariablemultivariablelogisticregressionanalysesleadingconstructionverifiedusingvalidationRESULTS:Amongstand-alonepredictivefactorsshapemarginsechogenicityechogenicfociextrathyroidalextensionring-SMIpatternspenetratingflow-signalenlargedratiodepictedenhancedreceiveroperatingcharacteristiccurveAUC92p < 0001relativesystemsyieldBYM189/240UBR51/240verificationdemonstratedAUCsyieldsrates888359/7516/75918572%31/4328%12/43CONCLUSION:foundsensitivityspecificityexistingTI-RADSsshowingthusdecreasingneedleCRITICALRELEVANCESTATEMENT:developstratifyingKEYPOINTS:improveshowedaccuracycanprovideclinicaltreatmentApplicationultrasound-assistedreportcancerUltrasound

Similar Articles

Cited By