Model-based translation of results from in vitro to in vivo experiments for afabicin activity against Staphylococcus aureus.

Rapha��l Saporta, Elisabet I Nielsen, Annick Menetrey, David R Cameron, Val��rie Nicolas-Metral, Lena E Friberg
Author Information
  1. Rapha��l Saporta: Department of Pharmacy, Uppsala University, Uppsala, Sweden. ORCID
  2. Elisabet I Nielsen: Department of Pharmacy, Uppsala University, Uppsala, Sweden. ORCID
  3. Annick Menetrey: Translational Medicine Department, Debiopharm International SA, Lausanne, Switzerland.
  4. David R Cameron: Translational Medicine Department, Debiopharm International SA, Lausanne, Switzerland.
  5. Val��rie Nicolas-Metral: Translational Medicine Department, Debiopharm International SA, Lausanne, Switzerland.
  6. Lena E Friberg: Department of Pharmacy, Uppsala University, Uppsala, Sweden. ORCID

Abstract

BACKGROUND: Translation of experimental data on antibiotic activity typically relies on pharmacokinetic/pharmacodynamic (PK/PD) indices. Model-based approaches, considering the full antibiotic killing time course, could be an alternative.
OBJECTIVES: To develop a mechanism-based modelling framework to assess the in vitro and in vivo activity of the FabI inhibitor antibiotic afabicin, and explore the ability of a model built on in vitro data to predict in vivo outcome.
METHODS: A PK/PD model was built to describe bacterial counts from 162 static in vitro time-kill curves evaluating the effect of afabicin desphosphono, the active moiety of the prodrug afabicin, against 21 Staphylococcus aureus strains. Combined with a mouse PK model, outcomes of afabicin doses of 0.011-190���mg/kg q6h against nine S. aureus strains in a murine thigh infection model were predicted, and thereafter refined by estimating PD parameters.
RESULTS: A sigmoid Emax model, with EC50 scaled by the MIC described the afabicin desphosphono killing in vitro. This model predicted, without parameter re-estimation, the in vivo bacterial counts at 24���h within a ��1���log margin for most dosing groups. When parameters were allowed to be estimated, EC50 was 38%-45% lower in vivo, compared with in vitro, within the studied MIC range.
CONCLUSIONS: The developed PK/PD model described the time course of afabicin activity across experimental conditions and bacterial strains. This model showed translational capacity as parameters estimated on in vitro time-kill data could well predict the in vivo outcome for a wide variety of doses in a mouse thigh infection model.

References

  1. J Antimicrob Chemother. 2018 May 1;73(5):1295-1304 [PMID: 29415212]
  2. Clin Microbiol Infect. 2018 Jul;24(7):697-706 [PMID: 29229429]
  3. Antimicrob Agents Chemother. 2007 Jan;51(1):128-36 [PMID: 17060524]
  4. J Chemother. 2013 Feb;25(1):18-25 [PMID: 23433440]
  5. Clin Microbiol Infect. 2022 Oct;28(10):1367-1374 [PMID: 35598857]
  6. Eur J Med Chem. 2020 Dec 15;208:112757 [PMID: 32883635]
  7. Antimicrob Agents Chemother. 2015 Dec 28;60(3):1695-701 [PMID: 26711777]
  8. J Pharm Sci. 1998 Oct;87(10):1177-83 [PMID: 9758673]
  9. Eur J Pharm Sci. 2013 Nov 20;50(3-4):440-6 [PMID: 23988847]
  10. Clin Infect Dis. 2008 Jun 1;46 Suppl 5:S344-9 [PMID: 18462089]
  11. CPT Pharmacometrics Syst Pharmacol. 2017 Feb;6(2):87-109 [PMID: 27884052]
  12. Clin Pharmacol Ther. 2021 Apr;109(4):856-866 [PMID: 33523464]
  13. Antimicrob Agents Chemother. 2012 Nov;56(11):5865-74 [PMID: 22948878]
  14. Drug Discov Today Technol. 2016 Sep - Dec;21-22:41-49 [PMID: 27978987]
  15. Comput Methods Programs Biomed. 2005 Sep;79(3):241-57 [PMID: 16023764]
  16. Antimicrob Agents Chemother. 2019 Feb 26;63(3): [PMID: 30559136]
  17. J Emerg Med. 2015 Apr;48(4):508-19 [PMID: 25605319]
  18. Clin Microbiol Rev. 2015 Jul;28(3):603-61 [PMID: 26016486]
  19. Structure. 2012 May 9;20(5):802-13 [PMID: 22579249]
  20. Antimicrob Agents Chemother. 2012 Jan;56(1):179-88 [PMID: 22037853]
  21. J Antimicrob Chemother. 2018 Mar 1;73(3):564-568 [PMID: 29216348]
  22. Curr Opin Microbiol. 2013 Oct;16(5):573-9 [PMID: 23871724]
  23. CPT Pharmacometrics Syst Pharmacol. 2013 Jun 26;2:e50 [PMID: 23836189]
  24. Clin Infect Dis. 2014 Jan;58 Suppl 1:S10-9 [PMID: 24343827]
  25. J Antimicrob Chemother. 2017 Nov 01;72(11):3108-3116 [PMID: 28961946]
  26. Antimicrob Agents Chemother. 2009 Aug;53(8):3544-8 [PMID: 19487444]
  27. Int J Antimicrob Agents. 2020 Feb;55(2):105848 [PMID: 31770623]
  28. Antimicrob Agents Chemother. 2015 May;59(5):2583-7 [PMID: 25691627]
  29. J Bone Joint Surg Am. 2015 May 20;97(10):837-45 [PMID: 25995495]
  30. Int J Antimicrob Agents. 2022 Sep;60(3):106616 [PMID: 35691605]
  31. Trends Microbiol. 2024 Feb;32(2):142-150 [PMID: 37689487]
  32. Clin Pharmacol Ther. 2021 Apr;109(4):867-891 [PMID: 33555032]
  33. Antimicrob Agents Chemother. 2020 Dec 16;65(1): [PMID: 33106262]
  34. J Antimicrob Chemother. 2015 Nov;70(11):3051-60 [PMID: 26349518]
  35. Antimicrob Agents Chemother. 2007 Apr;51(4):1580-1 [PMID: 17220418]
  36. AAPS J. 2011 Jun;13(2):143-51 [PMID: 21302010]
  37. Antimicrob Agents Chemother. 2019 Apr 25;63(5): [PMID: 30833428]
  38. Microb Biotechnol. 2023 Jul;16(7):1456-1474 [PMID: 37178319]
  39. Pharmacol Rev. 2013 Jun 26;65(3):1053-90 [PMID: 23803529]
  40. Front Pharmacol. 2021 Oct 29;12:770518 [PMID: 34776982]
  41. Clin Pharmacol Ther. 2021 Apr;109(4):1063-1073 [PMID: 33150591]
  42. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  43. Antibiotics (Basel). 2021 Dec 04;10(12): [PMID: 34943697]
  44. Antimicrob Agents Chemother. 2020 Sep 21;64(10): [PMID: 32747361]
  45. Pharm Res. 2016 May;33(5):1115-25 [PMID: 26786016]
  46. J Antimicrob Chemother. 2016 Jul;71(7):1881-4 [PMID: 26983860]
  47. Antimicrob Agents Chemother. 2011 Oct;55(10):4619-30 [PMID: 21807983]
  48. CPT Pharmacometrics Syst Pharmacol. 2017 Aug;6(8):512-522 [PMID: 28378945]
  49. J Pharm Sci. 2008 Apr;97(4):1606-14 [PMID: 17705288]
  50. Antimicrob Agents Chemother. 2011 Feb;55(2):756-61 [PMID: 21078933]
  51. Int J Antimicrob Agents. 2021 Aug;58(2):106368 [PMID: 34058336]

Grants

  1. /European Union's Horizon 2020
  2. 861323/Marie Sk��odowska-Curie
  3. /Debiopharm International SA

MeSH Term

Animals
Staphylococcus aureus
Anti-Bacterial Agents
Staphylococcal Infections
Microbial Sensitivity Tests
Mice
Disease Models, Animal
Female

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0modelvitroafabicinvivoactivitydataantibioticPK/PDbacterialaureusstrainsparametersexperimentalModel-basedkillingtimecoursebuiltpredictoutcomecountstime-killdesphosphonoStaphylococcusmousedosesthighinfectionpredictedEC50MICdescribedwithinestimatedBACKGROUND:Translationtypicallyreliespharmacokinetic/pharmacodynamicindicesapproachesconsideringfullalternativeOBJECTIVES:developmechanism-basedmodellingframeworkassessFabIinhibitorexploreabilityMETHODS:describe162staticcurvesevaluatingeffectactivemoietyprodrug21CombinedPKoutcomes0011-190���mg/kgq6hnineSmurinethereafterrefinedestimatingPDRESULTS:sigmoidEmaxscaledwithoutparameterre-estimation24���h��1���logmargindosinggroupsallowed38%-45%lowercomparedstudiedrangeCONCLUSIONS:developedacrossconditionsshowedtranslationalcapacitywellwidevarietytranslationresultsexperiments

Similar Articles

Cited By

No available data.