Neuroinformatics Applications of Data Science and Artificial Intelligence.

Ivo D Dinov
Author Information
  1. Ivo D Dinov: University of Michigan, Ann Arbor, MI, USA. statistics@umich.edu.

Abstract

Leveraging vast neuroimaging and electrophysiological datasets, AI algorithms are uncovering patterns that offer unprecedented insights into brain structure and function. Neuroinformatics, the fusion of neuroscience and AI, is advancing technologies like brain-computer interfaces, AI-driven cognitive enhancement, and personalized neuromodulation for treating neurological disorders. These developments hold potential to improve cognitive functions, restore motor abilities, and create human-machine collaborative systems. Looking ahead, the convergence of neuroscience and AI is set to transform cognitive modeling, decision-making, and mental health interventions. This fusion mirrors the quest for nuclear fusion energy, both driven by the need to unlock profound sources of understanding. As STEM disciplines continue to drive core developments of foundational models of the brain, neuroinformatics promises to lead innovations in augmented intelligence, personalized healthcare, and effective decision-making systems.

References

  1. Arbib, M. A., Bonaiuto, J. J., Bornkessel-Schlesewsky, I., Kemmerer, D., MacWhinney, B., Nielsen, F. Å., & Oztop, E. (2014). Action and language mechanisms in the brain: Data, models and neuroinformatics. Neuroinformatics, 12, 209–225. [DOI: 10.1007/s12021-013-9210-5]
  2. Baloh, R. W. (2024). Brain Electricity Book SubtitleThe Interwoven History of Electricity and Neuroscience. UK: Springer. [DOI: 10.1007/978-3-031-62994-5]
  3. Barabási, D. L., Bianconi, G., Bullmore, E., Burgess, M., Chung, S., Eliassi-Rad, T., George, D., Kovács, I. A., Makse, H., & Nichols, T. E. (2023). Neuroscience needs network science. Journal of Neuroscience., 43(34), 5989–5995. [DOI: 10.1523/JNEUROSCI.1014-23.2023]
  4. Bisiani, J., Anugu, A., & Pentyala, S. (2023). It’s Time to Go Quantum in Medicine. Journal of Clinical Medicine, 12(13), 4506. https://doi.org/10.3390/jcm12134506 [DOI: 10.3390/jcm12134506]
  5. Dinov, I., & Velev, M. (2021). Data science: time complexity, inferential uncertainty, and spacekime analytics (1st ed., p. 450). Berlin/Boston: De Gruyter. [DOI: 10.1515/9783110697827]
  6. Dinov, I. D. (2023). Data Science and Predictive Analytics: Biomedical and Health Applications using R. Springer. [DOI: 10.1007/978-3-031-17483-4]
  7. Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., Chua, T. S., & Li, Q. (2024). A survey on rag meeting llms: Towards retrieval-augmented large language models. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 6491–6501).
  8. Gao, X., Wang, Y., Chen, X., & Gao, S. (2021). Interface, interaction, and intelligence in generalized brain–computer interfaces. Trends in Cognitive Sciences., 25(8), 671–684. [DOI: 10.1016/j.tics.2021.04.003]
  9. Górriz, J. M., Ramírez, J., Ortiz, A., Martinez-Murcia, F. J., Segovia, F., Suckling, J., Leming, M., Zhang, Y.-D., Álvarez-Sánchez, J. R., & Bologna, G. (2020). Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications. Neurocomputing, 410, 237–270. [DOI: 10.1016/j.neucom.2020.05.078]
  10. Kasabov, N. (2013). Springer Handbook of Bio-neuro-informatics. UK: Springer Science & Business Media.
  11. Rao, R. P. (2023). Brain co-processors: Using AI to restore and augment brain function (pp. 1225–1260). Springer.
  12. Voigtlaender, S., Pawelczyk, J., Geiger, M., Vaios, E. J., Karschnia, P., Cudkowicz, M., Dietrich, J., Haraldsen, I. R. H., Feigin, V., & Owolabi, M. (2024). Artificial intelligence in neurology: Opportunities, challenges, and policy implications. Journal of Neurology., 271(5), 2258–2273. [DOI: 10.1007/s00415-024-12220-8]
  13. Zhang, R., Zhang, Y., Liu, Y., Guo, Y., Shen, Y., Deng, D., Qiu, Y. J., & Dinov, I. D. (2022). Kimesurface representation and tensor linear modeling of longitudinal data. Neural Computing and Applications., 34, 6377–6396. https://doi.org/10.1007/s00521-021-06789-8 [DOI: 10.1007/s00521-021-06789-8]
  14. Zhao, L., Zhang, L., Wu, Z., Chen, Y., Dai, H., Yu, X., Liu, Z., Zhang, T., Hu, X., & Jiang, X. (2023). When brain-inspired ai meets agi. Meta-Radiology, 1, 100005. [DOI: 10.1016/j.metrad.2023.100005]

MeSH Term

Humans
Artificial Intelligence
Data Science
Neurosciences
Brain-Computer Interfaces
Brain

Word Cloud

Created with Highcharts 10.0.0AIfusioncognitivebrainNeuroinformaticsneurosciencepersonalizeddevelopmentssystemsdecision-makingLeveragingvastneuroimagingelectrophysiologicaldatasetsalgorithmsuncoveringpatternsofferunprecedentedinsightsstructurefunctionadvancingtechnologieslikebrain-computerinterfacesAI-drivenenhancementneuromodulationtreatingneurologicaldisordersholdpotentialimprovefunctionsrestoremotorabilitiescreatehuman-machinecollaborativeLookingaheadconvergencesettransformmodelingmentalhealthinterventionsmirrorsquestnuclearenergydrivenneedunlockprofoundsourcesunderstandingSTEMdisciplinescontinuedrivecorefoundationalmodelsneuroinformaticspromisesleadinnovationsaugmentedintelligencehealthcareeffectiveApplicationsDataScienceArtificialIntelligence

Similar Articles

Cited By