Comparative analysis of single-cell pathway scoring methods and a novel approach.

Ruoqiao H Wang, Juilee Thakar
Author Information
  1. Ruoqiao H Wang: Department of Biomedical Genetics, University of Rochester, 601 Elmwood Ave, NY 14642, USA. ORCID
  2. Juilee Thakar: Department of Biomedical Genetics, University of Rochester, 601 Elmwood Ave, NY 14642, USA. ORCID

Abstract

Single-cell gene set analysis (scGSA) provides a useful approach for quantifying molecular functions and pathways in high-throughput transcriptomic data, facilitating the biological interpretation of complex human datasets. However, various factors such as gene set size, quality of the gene sets and the dropouts impact the performance of scGSA. To address these limitations, we present a single-cell Pathway Score (scPS) method to measure gene set activity at single-cell resolution. Furthermore, we benchmark our method with six other methods: AUCell, AddModuleScore, JASMINE, UCell, SCSE and ssGSEA. The comparison across all the methods using two different simulation approaches highlights the effect of cell count, gene set size, noise, condition-specific genes and zero imputation on their performance. The results of our study indicate that the scPS is comparable with other single-cell scoring methods and detects fewer false positives. Importantly, this work reveals critical variables in the scGSA.

References

  1. Elife. 2022 Feb 25;11: [PMID: 35212622]
  2. Brief Bioinform. 2009 Jan;10(1):24-34 [PMID: 18836208]
  3. PeerJ. 2023 Feb 27;11:e14927 [PMID: 36874981]
  4. Nat Cell Biol. 2013 Apr;15(4):363-72 [PMID: 23524953]
  5. Nature. 2009 Nov 5;462(7269):108-12 [PMID: 19847166]
  6. PLoS One. 2023 Feb 24;18(2):e0281898 [PMID: 36827401]
  7. Entropy (Basel). 2020 Apr 10;22(4): [PMID: 33286201]
  8. J Cell Physiol. 2021 Feb;236(2):1158-1183 [PMID: 32710499]
  9. Front Bioeng Biotechnol. 2022 Jan 05;9:779225 [PMID: 35071201]
  10. Genome Biol. 2017 Sep 12;18(1):174 [PMID: 28899397]
  11. NAR Genom Bioinform. 2023 Mar 03;5(1):lqad024 [PMID: 36879897]
  12. Nat Commun. 2022 Mar 10;13(1):1246 [PMID: 35273156]
  13. Nucleic Acids Res. 2019 Dec 2;47(21):e133 [PMID: 31294801]
  14. Trends Genet. 2023 Apr;39(4):308-319 [PMID: 36750393]
  15. Comput Struct Biotechnol J. 2021 Jun 30;19:3796-3798 [PMID: 34285779]
  16. J Immunol. 2021 Jun 15;206(12):2785-2790 [PMID: 34049971]
  17. Nat Commun. 2018 Mar 8;9(1):997 [PMID: 29520097]
  18. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  19. Sci Rep. 2021 Feb 5;11(1):3232 [PMID: 33547350]
  20. Nat Commun. 2020 Mar 27;11(1):1585 [PMID: 32221292]
  21. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  22. Brief Bioinform. 2021 Jan 18;22(1):545-556 [PMID: 32026945]
  23. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  24. Comput Struct Biotechnol J. 2020 Oct 15;18:2953-2961 [PMID: 33209207]
  25. Nat Commun. 2020 Mar 3;11(1):1169 [PMID: 32127540]
  26. Nat Rev Genet. 2016 Apr 12;17(6):353-64 [PMID: 27070863]
  27. J Bioinform Comput Biol. 2019 Oct;17(5):1940010 [PMID: 31856670]
  28. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  29. BMC Bioinformatics. 2007 Nov 07;8:431 [PMID: 17988400]
  30. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  31. Hum Genomics. 2019 Oct 22;13(Suppl 1):42 [PMID: 31639047]
  32. Database (Oxford). 2016 Jul 03;2016: [PMID: 27374120]
  33. Genome Biol. 2022 Jan 21;23(1):31 [PMID: 35063006]
  34. NPJ Syst Biol Appl. 2022 Sep 21;8(1):35 [PMID: 36131068]
  35. Brief Bioinform. 2014 Jul;15(4):504-18 [PMID: 23413432]
  36. Brief Bioinform. 2021 May 20;22(3): [PMID: 34020534]
  37. Cancer Res Commun. 2022 Oct 25;2(10):1255-1265 [PMID: 36969740]
  38. Nucleic Acids Res. 2023 Jul 5;51(W1):W168-W179 [PMID: 37166973]
  39. Front Genet. 2020 Jun 30;11:654 [PMID: 32695141]

Word Cloud

Created with Highcharts 10.0.0genesetsingle-cellscGSAmethodsanalysisapproachsizeperformancescPSmethodscoringSingle-cellprovidesusefulquantifyingmolecularfunctionspathwayshigh-throughputtranscriptomicdatafacilitatingbiologicalinterpretationcomplexhumandatasetsHowevervariousfactorsqualitysetsdropouts impactaddresslimitationspresentPathwayScoremeasureactivityresolutionFurthermorebenchmarksixmethods:AUCellAddModuleScoreJASMINEUCellSCSEssGSEAcomparisonacrossusingtwodifferentsimulationapproacheshighlightseffectcellcountnoisecondition-specificgeneszeroimputationresultsstudyindicatecomparabledetectsfewerfalsepositivesImportantlyworkrevealscriticalvariablesComparativepathwaynovel

Similar Articles

Cited By