The role of heterotrophic plasticity in coral response to natural low-light environments.

Yong Luo, Xiaolei Yu, Lintao Huang, Jianfeng Gan, Xinming Lei, Lei Jiang, Chengyue Liu, Youfang Sun, Meng Cheng, Yuyang Zhang, Guowei Zhou, Sheng Liu, Jiansheng Lian, Hui Huang
Author Information
  1. Yong Luo: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China. ORCID
  2. Xiaolei Yu: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China.
  3. Lintao Huang: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China. ORCID
  4. Jianfeng Gan: South China Institute of Environmental Sciences Ministry of Ecology and Environment of the People's Republic of China Guangzhou China.
  5. Xinming Lei: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China.
  6. Lei Jiang: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China. ORCID
  7. Chengyue Liu: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China.
  8. Youfang Sun: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China.
  9. Meng Cheng: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China.
  10. Yuyang Zhang: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China.
  11. Guowei Zhou: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China.
  12. Sheng Liu: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China.
  13. Jiansheng Lian: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China.
  14. Hui Huang: CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences Guangzhou China. ORCID

Abstract

Coastal darkening is emerging as a global threat to fringing reefs. While some reef-building corals exhibit resistance to low-light environments, the mechanisms behind this resistance, particularly the role of coral hosts, remain inadequately understood. Here, we investigated variations in underwater photosynthetically active radiation (PAR) and employed the Bayesian stable isotope mixing model (MixSIAR) to estimate the contributions of autotrophic (i.e., dissolved inorganic matter, DIM) and heterotrophic sources (i.e., particulate organic matter, POM, and dissolved organic matter, DOM) to the nutrition of the reef coral on the Luhuitou turbid reef in the northern South China Sea. Our findings revealed that the heterotrophic contribution to coral nutrition increased to 58.5% with decreasing PAR and that the heterotrophic contribution was significantly negatively correlated with δC difference between host and symbiont (δC). Moreover, we observed significant seasonal variations in the respective contributions of POM and DOM to coral nutrition, linked to the sources of these nutrients, demonstrating that can selectively ingest POM and DOM based on their bioavailability to enhance its heterotrophic contribution. This heterotrophic plasticity improved the low-light resistance of and contributed to its prominence within coral communities. However, with a low-light threshold of approximately 3.73% of the surface PAR for , our results underscore the need for effective strategies to mitigate low-light conditions on nearshore turbid reefs. In summary, our study highlights the critical role of heterotrophic plasticity in coral responses to natural low-light environments, suggesting that some reef-building corals with such plasticity could become dominant or resilient species in the context of coastal darkening.

Keywords

References

  1. Mar Pollut Bull. 2021 Aug;169:112539 [PMID: 34153875]
  2. Nature. 2006 Apr 27;440(7088):1186-9 [PMID: 16641995]
  3. Mar Environ Res. 2019 May;147:80-89 [PMID: 31010596]
  4. Front Microbiol. 2021 Feb 26;12:614634 [PMID: 33717004]
  5. Sci Total Environ. 2019 Mar 15;656:1386-1400 [PMID: 30625667]
  6. Front Mar Sci. 2020 Nov 19;7:988 [PMID: 33409285]
  7. Aquat Biosyst. 2012 Aug 31;8(1):19 [PMID: 22938529]
  8. Mar Environ Res. 2023 Jan;183:105792 [PMID: 36371951]
  9. Front Microbiol. 2022 Nov 08;13:1052776 [PMID: 36425038]
  10. Mar Environ Res. 2015 Apr;105:39-52 [PMID: 25682391]
  11. Science. 2005 Apr 15;308(5720):376-80 [PMID: 15831750]
  12. Mar Environ Res. 2019 May;147:101-112 [PMID: 31029435]
  13. J Environ Manage. 2022 Sep 15;318:115511 [PMID: 35759963]
  14. Glob Chang Biol. 2016 Mar;22(3):1145-54 [PMID: 26695523]
  15. Sci Total Environ. 2024 Sep 15;943:173694 [PMID: 38852868]
  16. PLoS One. 2013 Nov 21;8(11):e81172 [PMID: 24278392]
  17. Curr Biol. 2018 Nov 5;28(21):3355-3363.e4 [PMID: 30344114]
  18. Limnol Oceanogr. 2019 Sep;64(5):2011-2028 [PMID: 31598010]
  19. Sci Adv. 2020 Apr 10;6(15):eaaz5443 [PMID: 32300659]
  20. Conserv Biol. 2013 Apr;27(2):261-9 [PMID: 23140101]
  21. Glob Chang Biol. 2021 Nov;27(21):5547-5563 [PMID: 34382288]
  22. Glob Chang Biol. 2020 Mar;26(3):1367-1373 [PMID: 31912964]
  23. J Exp Mar Biol Ecol. 2000 Sep 20;252(2):221-253 [PMID: 10967335]
  24. Glob Chang Biol. 2022 Jan;28(1):33-45 [PMID: 34710272]
  25. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9342-6 [PMID: 16594090]
  26. Ecol Appl. 2019 Dec;29(8):e01978 [PMID: 31332879]
  27. Glob Chang Biol. 2020 Sep;26(9):4800-4811 [PMID: 32585056]
  28. PeerJ. 2018 Jun 21;6:e5096 [PMID: 29942712]
  29. Sci Total Environ. 2018 Oct 15;639:876-887 [PMID: 29929326]
  30. Mar Environ Res. 2022 May;177:105613 [PMID: 35429821]
  31. Toxics. 2022 Jul 18;10(7): [PMID: 35878302]
  32. Rapid Commun Mass Spectrom. 2020 Apr 30;34(8):e8663 [PMID: 31802564]
  33. Mar Environ Res. 2020 Mar;155:104887 [PMID: 32072989]
  34. ISME J. 2018 Mar;12(3):860-868 [PMID: 29330535]
  35. Mar Pollut Bull. 2021 Sep;170:112536 [PMID: 34126443]
  36. PLoS One. 2011;6(12):e29535 [PMID: 22216307]
  37. Sci Rep. 2024 Feb 13;14(1):3646 [PMID: 38351312]
  38. Mar Environ Res. 2019 May;147:138-148 [PMID: 31097215]
  39. J Exp Biol. 2008 Mar;211(Pt 6):860-5 [PMID: 18310111]
  40. Biol Rev Camb Philos Soc. 2009 Feb;84(1):1-17 [PMID: 19046402]
  41. Mar Pollut Bull. 2018 Oct;135:1205-1220 [PMID: 30301020]
  42. PLoS One. 2013 Dec 02;8(12):e81247 [PMID: 24312542]
  43. Nature. 2018 Jul;559(7715):517-526 [PMID: 30046075]
  44. Zoology (Jena). 2015 Apr;118(2):71-8 [PMID: 25467066]
  45. Sci Rep. 2020 Mar 16;10(1):4762 [PMID: 32179846]

Word Cloud

Created with Highcharts 10.0.0coralheterotrophiclow-lightnutritionplasticitydarkeningreefsresistanceenvironmentsrolePARmatterPOMDOMcontributionfringingreef-buildingcoralsvariationsstablecontributionsiedissolvedsourcesorganicreefturbidδCnaturalcoastalCoastalemergingglobalthreatexhibitmechanismsbehindparticularlyhostsremaininadequatelyunderstoodinvestigatedunderwaterphotosyntheticallyactiveradiationemployedBayesianisotopemixingmodelMixSIARestimateautotrophicinorganicDIMparticulateLuhuitounorthernSouthChinaSeafindingsrevealedincreased585%decreasingsignificantlynegativelycorrelateddifferencehostsymbiontMoreoverobservedsignificantseasonalrespectivelinkednutrientsdemonstratingcanselectivelyingestbasedbioavailabilityenhanceimprovedcontributedprominencewithincommunitiesHoweverthresholdapproximately373%surfaceresultsunderscoreneedeffectivestrategiesmitigateconditionsnearshoresummarystudyhighlightscriticalresponsessuggestingbecomedominantresilientspeciescontextresponseGalaxeafascicularisisotopes

Similar Articles

Cited By