regulates angiogenesis and tumor progression in hepatocellular carcinoma via the HIF-1��/VEGF pathway.

Dong Jiang, Zhi Qi, Zhi-Ying Xu, Yi-Ran Li
Author Information
  1. Dong Jiang: Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China.
  2. Zhi Qi: Department of Neurology, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China.
  3. Zhi-Ying Xu: Department of Hepatic Surgery IV, Shanghai Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China.
  4. Yi-Ran Li: Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China.

Abstract

hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with a poor prognosis. This research aimed to investigate the role of F13B in HCC and its underlying mechanisms. Through comprehensive bioinformatics analysis of the GSE120123 and The Cancer Genome Atlas (TCGA)-Liver hepatocellular carcinoma (LIHC) datasets, we identified 220 overlapping prognosis-related genes. Eight key genes, including the previously unreported CCDC170 and F13B in HCC, were identified through Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression analysis. F13B emerged as a significant prognostic factor in HCC, warranting further investigation in subsequent analyses. In vitro experiments showed that F13B expression was notably reduced in HCC cell lines and tissues, particularly in Huh-7 and SMMC-7721 cells. Overexpression of F13B inhibited cell invasion, migration, and proliferation, while its knockdown produced the opposite effect. A lactate dehydrogenase (LDH) activity assay in human umbilical vein endothelial cells (HUVECs) demonstrated that F13B overexpression reduced vascular endothelial growth factor (VEGF)-induced cytotoxicity, whereas knockdown increased it. Further analysis revealed that F13B negatively regulates VEGFA expression, affecting HUVEC proliferation. In HUVECs, F13B overexpression reversed VEGF-induced upregulation of key angiogenesis markers, including phospho-VEGF receptor 2 (p-VEGFR2), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), as well as AKT/mTOR signaling proteins, phospho-AKT (p-AKT), and phospho-mTOR (p-mTOR). Additionally, F13B negatively regulated VEGFA and hypoxia-inducible factor 1 A (HIF1A) under hypoxic conditions, counteracting the hypoxia-induced increase in cell viability. These findings suggest that F13B regulates angiogenesis through the HIF-1��/VEGF pathway and plays a crucial role in HCC progression. Our results highlight the potential of F13B as a therapeutic target in HCC, providing novel insights into the molecular mechanisms of HCC and its prognostic significance.

References

  1. Phytomedicine. 2023 Dec;121:155131 [PMID: 37806155]
  2. Cell Death Differ. 2022 May;29(5):946-960 [PMID: 35361964]
  3. Semin Cancer Biol. 2022 Nov;86(Pt 3):251-261 [PMID: 35307547]
  4. Int J Mol Sci. 2022 Jan 28;23(3): [PMID: 35163468]
  5. FEBS J. 2021 Jun;288(12):3813-3833 [PMID: 33030287]
  6. Nat Rev Gastroenterol Hepatol. 2023 Jan;20(1):37-49 [PMID: 36258033]
  7. Blood Rev. 2023 May;59:101032 [PMID: 36372609]
  8. MedComm (2020). 2024 Mar 09;5(3):e510 [PMID: 38463397]
  9. Onco Targets Ther. 2020 Sep 11;13:9103-9111 [PMID: 32982299]
  10. J Clin Pathol. 1999 Jan;52(1):5-9 [PMID: 10343605]
  11. Cell Cycle. 2020 Jan;19(2):163-178 [PMID: 31885322]
  12. Hepat Med. 2021 May 25;13:45-57 [PMID: 34079394]
  13. Biomaterials. 2023 Nov;302:122349 [PMID: 37844429]
  14. J Cancer. 2018 Jan 1;9(2):321-330 [PMID: 29344279]
  15. Nat Rev Mol Cell Biol. 2023 Nov;24(11):816-834 [PMID: 37491579]
  16. BMC Med Genet. 2020 Jan 8;21(1):9 [PMID: 31914974]
  17. J Funct Foods. 2018 Jan;40:573-581 [PMID: 29576805]
  18. Am J Transl Res. 2023 Jul 15;15(7):4521-4532 [PMID: 37560243]
  19. Tissue Cell. 2023 Oct;84:102180 [PMID: 37573607]
  20. Front Oncol. 2023 May 16;13:1170567 [PMID: 37260987]
  21. Oncotarget. 2015 Feb 10;6(4):2180-92 [PMID: 25537504]
  22. Molecules. 2020 Mar 30;25(7): [PMID: 32235537]
  23. Front Pharmacol. 2023 Jan 09;13:1077468 [PMID: 36699050]
  24. J Transl Med. 2023 Dec 2;21(1):876 [PMID: 38041179]
  25. Semin Cancer Biol. 2022 Oct;85:69-94 [PMID: 34175443]
  26. Cells. 2023 Mar 03;12(5): [PMID: 36899934]
  27. Cell. 2022 May 26;185(11):1814-1836 [PMID: 35580586]
  28. Vascul Pharmacol. 2010 Jan-Feb;52(1-2):46-54 [PMID: 19854299]
  29. Sci Rep. 2024 Feb 28;14(1):4926 [PMID: 38418897]
  30. Anticancer Agents Med Chem. 2022;22(4):703-712 [PMID: 33390140]
  31. Int Immunopharmacol. 2024 Nov 15;141:112917 [PMID: 39137630]
  32. Biochem Biophys Res Commun. 2014 Mar 28;446(1):61-7 [PMID: 24565846]
  33. Gastroenterology. 2015 Oct;149(5):1226-1239.e4 [PMID: 26099527]
  34. Curr Drug Targets. 2023;24(11):919-928 [PMID: 37534791]
  35. Cochrane Database Syst Rev. 2024 Jun 4;6:CD013731 [PMID: 38837373]
  36. Cell Death Dis. 2022 Feb 2;13(2):102 [PMID: 35110549]
  37. Mol Med Rep. 2022 Mar;25(3): [PMID: 35059733]
  38. Klin Padiatr. 1997 Jul-Aug;209(4):150-5 [PMID: 9293446]
  39. Biochem Pharmacol. 2020 Feb;172:113771 [PMID: 31863779]
  40. Exp Cell Res. 2020 Dec 1;397(1):112311 [PMID: 32991874]
  41. Bioengineered. 2022 Apr;13(4):8051-8063 [PMID: 35293286]
  42. World J Gastroenterol. 2023 Mar 28;29(12):1875-1898 [PMID: 37032730]
  43. Microvasc Res. 2020 May;129:103959 [PMID: 31734375]
  44. Gut Liver. 2014 Sep;8(5):536-42 [PMID: 25071074]
  45. Molecules. 2022 Aug 28;27(17): [PMID: 36080304]
  46. Biochem Pharmacol. 2023 Aug;214:115681 [PMID: 37429423]
  47. J Hepatocell Carcinoma. 2021 May 13;8:387-401 [PMID: 34012929]
  48. World J Gastrointest Oncol. 2021 Aug 15;13(8):845-855 [PMID: 34457190]
  49. Oncol Lett. 2018 Aug;16(2):2207-2214 [PMID: 30008920]
  50. Front Pharmacol. 2023 Jan 09;13:1072547 [PMID: 36699068]
  51. Cells. 2022 Sep 01;11(17): [PMID: 36078142]
  52. Biomedicines. 2022 Dec 09;10(12): [PMID: 36551958]
  53. Blood. 2008 May 1;111(9):4617-26 [PMID: 18292289]
  54. Cureus. 2021 Nov 5;13(11):e19274 [PMID: 34754704]

MeSH Term

Humans
Carcinoma, Hepatocellular
Liver Neoplasms
Hypoxia-Inducible Factor 1, alpha Subunit
Neovascularization, Pathologic
Vascular Endothelial Growth Factor A
Signal Transduction
Cell Line, Tumor
Cell Proliferation
Gene Expression Regulation, Neoplastic
Disease Progression
Cell Movement
Human Umbilical Vein Endothelial Cells
Prognosis
Male
Angiogenesis

Chemicals

Hypoxia-Inducible Factor 1, alpha Subunit
Vascular Endothelial Growth Factor A
HIF1A protein, human
VEGFA protein, human

Word Cloud

Created with Highcharts 10.0.0F13BHCCcarcinomaanalysisfactorcellregulatesangiogenesistumorrolemechanismshepatocellularidentifiedgeneskeyincludingprognosticexpressionreducedcellsproliferationknockdownendothelialHUVECsoverexpressionnegativelyVEGFAmatrixHIF-1��/VEGFpathwayprogressionHepatocellularhighlyaggressivemalignantpoorprognosisresearchaimedinvestigateunderlyingcomprehensivebioinformaticsGSE120123CancerGenomeAtlasTCGA-LiverLIHCdatasets220overlappingprognosis-relatedEightpreviouslyunreportedCCDC170LeastAbsoluteShrinkageSelectionOperatorLASSO-CoxregressionemergedsignificantwarrantinginvestigationsubsequentanalysesvitroexperimentsshowednotablylinestissuesparticularlyHuh-7SMMC-7721OverexpressioninhibitedinvasionmigrationproducedoppositeeffectlactatedehydrogenaseLDHactivityassayhumanumbilicalveindemonstratedvasculargrowthVEGF-inducedcytotoxicitywhereasincreasedrevealedaffectingHUVECreversedVEGF-inducedupregulationmarkersphospho-VEGFreceptor2p-VEGFR2metalloproteinase-2MMP-2metalloproteinase-9MMP-9wellAKT/mTORsignalingproteinsphospho-Aktp-AKTphospho-mTORp-mTORAdditionallyregulatedhypoxia-inducible1HIF1Ahypoxicconditionscounteractinghypoxia-inducedincreaseviabilityfindingssuggestplayscrucialresultshighlightpotentialtherapeutictargetprovidingnovelinsightsmolecularsignificancevia

Similar Articles

Cited By

No available data.