Using Geovisualizations to Educate the Public About Environmental Health Hazards: What Works and Why.

Catherine E Slavik, Carolyn Fish, Ellen Peters
Author Information
  1. Catherine E Slavik: Center for Science Communication Research, University of Oregon, Eugene, OR, USA. cslavik@uoregon.edu. ORCID
  2. Carolyn Fish: Department of Geography, University of Oregon, Eugene, OR, USA. ORCID
  3. Ellen Peters: Center for Science Communication Research, University of Oregon, Eugene, OR, USA. ORCID

Abstract

PURPOSE OF REVIEW: Informing the public about environmental risks to health is crucial for raising awareness around hazards, and promoting actions that minimize exposures. Geographic visualizations-geovisualizations-have become an increasingly common way to disseminate web-based information about environmental hazards, displaying spatial variations in exposures and health outcomes using a map. Unfortunately, ineffective geovisualizations can result in inaccurate inferences about a hazard, leading to misguided actions or policies. In this narrative review, we discuss key considerations for the use of geovisualizations to promote environmental health literacy.
RECENT FINDINGS: Many conventional geovisualizations used for hazard education and risk communication fail to consider how people process visual information. Design choices that prompt viewers to think and feel, leveraging processes such as individual attention, memory, and emotion, could promote improved comprehension and decision making around environmental health risks using geovisualizations. Based on the studies reviewed, we recommend six strategies for designing effective, evidence-based geovisualizations, synthesizing evidence from the cognitive sciences, cartography, and environmental health. These strategies include: Displaying only key data, tailoring and testing geovisualizations with the desired audience, using salient cues, leveraging emotion, aiding pattern recognition, and limiting visual distractions. Geovisualizations offer a promising avenue for advancing public awareness and fostering proactive measures in addressing complex environmental health challenges. This review highlights how incorporating evidence-based design principles into geovisualizations could promote environmental health literacy. More experimental research evaluating geovisualizations, using interdisciplinary approaches, is needed.

Keywords

References

  1. Prüss-Ustün A, Wolf J, Corvalán C, Neville T, Bos R, Neira M. Diseases due to unhealthy environments: an updated estimate of the global burden of disease attributable to environmental determinants of health. J Public Health Oxf Engl. 2017;39:464–75. [DOI: 10.1093/pubmed/fdw085]
  2. Ratnapradipa D, Middleton WK, Wodika AB, Brown SL, Preihs K. What does the Public Know About Environmental Health? A qualitative Approach to Refining an Environmental Health Awareness Instrument. J Environ Health. 2015;77:22–9. [PMID: 25876262]
  3. Ramírez AS, Ramondt S, Van Bogart K, Perez-Zuniga R. Public Awareness of Air Pollution and Health threats: challenges and opportunities for Communication Strategies to Improve Environmental Health Literacy. J Health Commun. 2019;24:75–83. [PMID: 30730281]
  4. Houts PS, Doak CC, Doak LG, Loscalzo MJ. The role of pictures in improving health communication: a review of research on attention, comprehension, recall, and adherence. Patient Educ Couns. 2006;61:173–90. [PMID: 16122896]
  5. Bucher H-J, Schumacher P. The relevance of attention for selecting news content. An eye-tracking study on attention patterns in the reception of print and online media. 2006;31:347–68.
  6. Chishtie J, Bielska IA, Barrera A, Marchand J-S, Imran M, Tirmizi SFA, et al. Interactive Visualization Applications in Population Health and Health Services Research: systematic scoping review. J Med Internet Res. 2022;24:e27534. [PMID: 35179499]
  7. Hogräfer M, Heitzler M, Schulz H-J. The state of the art in Map-Like visualization. Comput Graph Forum. 2020;39:647–74. [DOI: 10.1111/cgf.14031]
  8. Propen AD. Cartographic representation and the construction of lived worlds: understanding cartographic practice as embodied knowledge. Rethink Maps. Routledge; 2009.
  9. Stieb DM, Huang A, Hocking R, Crouse DL, Osornio-Vargas AR, Villeneuve PJ. Using maps to communicate environmental exposures and health risks: review and best-practice recommendations. Environ Res. 2019;176:108518. [PMID: 31202044]
  10. Çöltekin A, Bleisch S, Andrienko G, Dykes J. Persistent challenges in geovisualization – a community perspective. Int J Cartogr. 2017;3:115–39. [DOI: 10.1080/23729333.2017.1302910]
  11. Lindell MK. Improving Hazard Map comprehension for protective action decision making. Front Comput Sci. 2020;2:1–14. [DOI: 10.3389/fcomp.2020.00027]
  12. Sopan A, Noh AS-I, Karol S, Rosenfeld P, Lee G, Shneiderman B. Community Health Map: a geospatial and multivariate data visualization tool for public health datasets. Gov Inf Q. 2012;29:223–34. [DOI: 10.1016/j.giq.2011.10.002]
  13. Zakkar M, Sedig K. Interactive visualization of public health indicators to support policymaking: an exploratory study. Online J Public Health Inf. 2017;9:e190.
  14. Cinnamon J, Rinner C, Cusimano MD, Marshall S, Bekele T, Hernandez T, et al. Evaluating web-based static, animated and interactive maps for injury prevention. Geospat Health. 2009;4:3–16. [PMID: 19908186]
  15. Jones JM, Henry K, Wood N, Ng P, Jamieson M. HERA: a dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios. Comput Geosci. 2017;109:124–33. [DOI: 10.1016/j.cageo.2017.08.012]
  16. Stein S, Geller RJ, Liu M. Why earthquake hazard maps often fail and what to do about it. Tectonophysics. 2012;562–563:1–25. [DOI: 10.1016/j.tecto.2012.06.047]
  17. Dory G, Qiu Z, Qiu CM, Fu MR, Ryan CE. A phenomenological understanding of residents’ emotional distress of living in an environmental justice community. Int J Qual Stud Health Well-Being. 2017;12:1269450. [PMID: 28452606]
  18. Parrott R, Hopfer S, Ghetian C, Lengerich E. Mapping as a Visual Health Communication Tool: promises and dilemmas. Health Commun. 2007;22:13–24. [PMID: 17617010]
  19. Rezk AA, Hendawy M. Informative cartographic communication: a framework to evaluate the effects of map types on users’ interpretation of COVID-19 geovisualizations. Cartogr Geogr Inf Sci. 2023;0:1–18.
  20. Thorpe A, Scherer AM, Han PKJ, Burpo N, Shaffer V, Scherer L, et al. Exposure to Common Geographic COVID-19 prevalence maps and public knowledge, risk perceptions, and behavioral intentions. JAMA Netw Open. 2021;4:e2033538–2033538. [PMID: 33404615]
  21. Franconeri SL, Padilla LM, Shah P, Zacks JM, Hullman J. The Science of Visual Data Communication: what works. Psychol Sci Public Interest. 2021;22:110–61. [PMID: 34907835]
  22. Eberhard K. The effects of visualization on judgment and decision-making: a systematic literature review. Manag Rev Q. 2023;73:167–214. [DOI: 10.1007/s11301-021-00235-8]
  23. Marti M, Stauffacher M, Wiemer S. Difficulties in explaining complex issues with maps: evaluating seismic hazard communication – the Swiss case. Nat Hazards Earth Syst Sci. 2019;19:2677–700. [DOI: 10.5194/nhess-19-2677-2019]
  24. Rickard LN, Schuldt JP, Eosco GM, Scherer CW, Daziano RA. The Proof is in the picture: the influence of imagery and experience in perceptions of Hurricane Messaging. Weather Clim Soc. 2017;9:471–85. [DOI: 10.1175/WCAS-D-16-0048.1]
  25. Fabrikant SI, Christophe S, Papastefanou G, Lanini-Maggi S. Emotional response to map design aesthetics. Columbus, Ohio: s.n.; 2012 [cited 2022 Nov 28]. https://www.zora.uzh.ch/id/eprint/71701
  26. Cameron LD, Chan CKY. Designing Health communications: harnessing the power of Affect, Imagery, and self-regulation. Soc Personal Psychol Compass. 2008;2:262–82. [DOI: 10.1111/j.1751-9004.2007.00057.x]
  27. Garcia-Retamero R, Cokely ET. Designing visual aids that promote risk literacy: a systematic review of health research and evidence-based design heuristics. Hum Factors J Hum Factors Ergon Soc. 2017;59:582–627. [DOI: 10.1177/0018720817690634]
  28. Slovic P, Peters E, Finucane ML, MacGregor DG. Affect, risk, and decision making. Health Psychol. 2005;24:S35–40. [PMID: 16045417]
  29. Fish C. Elements of vivid cartography. Cartogr J. 2021;58:150–66. [DOI: 10.1080/00087041.2020.1800160]
  30. Anderson C, Robinson A. Affective congruence in visualization design: influences on reading categorical maps. IEEE Trans Vis Comput Graph. 2022;28:2867–78. [PMID: 33417558]
  31. Stempel P, Becker A. Visualizations out of Context: addressing pitfalls of real-time realistic hazard visualizations. ISPRS Int J Geo-Inf. 2019;8:318. [DOI: 10.3390/ijgi8080318]
  32. Bell BS, Hoskins RE, Pickle L, Wartenberg D. Current practices in spatial analysis of cancer data: mapping health statistics to inform policymakers and the public. Int J Health Geogr. 2006;5:1–14. [DOI: 10.1186/1476-072X-5-49]
  33. Nykiforuk CIJ, Flaman LM. Geographic Information Systems (GIS) for Health Promotion and Public Health: a review. Health Promot Pract. 2011;12:63–73. [PMID: 19546198]
  34. Lahr J, Kooistra L. Environmental risk mapping of pollutants: state of the art and communication aspects. Sci Total Environ. 2010;408:3899–907. [PMID: 19939435]
  35. Barry AM. Perception theory. Handb Vis Commun. Routledge; 2004.
  36. Wagemans J, Feldman J, Gepshtein S, Kimchi R, Pomerantz JR, van der Helm PA, et al. A century of gestalt psychology in visual perception: II. Conceptual and theoretical foundations. Psychol Bull. 2012;138:1218–52. [PMID: 22845750]
  37. Chen X, Zelinsky GJ. Real-world visual search is dominated by top-down guidance. Vis Res. 2006;46:4118–33. [PMID: 17005231]
  38. Connor CE, Egeth HE, Yantis S. Visual attention: Bottom-Up Versus Top-Down. Curr Biol. 2004;14:R850–2. [PMID: 15458666]
  39. Krishna A. Visual perception: an overview. United Kingdom: Taylor & Francis Group; 2009.
  40. Pinker S. A theory of graph comprehension. Artif Intell Future Test. Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc; 1990. pp. 73–126.
  41. Reani M, Peek N, Jay C. How different visualizations affect human reasoning about uncertainty: an analysis of visual behaviour. Comput Hum Behav. 2019;92:55–64. [DOI: 10.1016/j.chb.2018.10.033]
  42. Patterson RE, Blaha LM, Grinstein GG, Liggett KK, Kaveney DE, Sheldon KC, et al. A human cognition framework for information visualization. Comput Graph. 2014;42:42–58. [DOI: 10.1016/j.cag.2014.03.002]
  43. Krueger LE. Familiarity effects in visual information processing. Psychol Bull. 1975;82:949–74. [PMID: 1103203]
  44. Kopp T, Riekert M, Utz S. When cognitive fit outweighs cognitive load: redundant data labels in charts increase accuracy and speed of information extraction. Comput Hum Behav. 2018;86:367–76. [DOI: 10.1016/j.chb.2018.04.037]
  45. Slovic P, Finucane ML, Peters E, MacGregor DG. Risk as analysis and risk as feelings: some thoughts about Affect, reason, risk, and rationality. Risk Anal. 2004;24:311–22. [PMID: 15078302]
  46. Kennedy H, Hill RL. The feeling of numbers: emotions in Everyday engagements with data and their visualisation. Sociology. 2018;52:830–48. [DOI: 10.1177/0038038516674675]
  47. Adaval R, Saluja G, Jiang Y. Seeing and thinking in pictures: a review of visual information processing. Consum Psychol Rev. 2019;2:50–69. [DOI: 10.1002/arcp.1049]
  48. Plass JL, Heidig S, Hayward EO, Homer BD, Um E. Emotional design in multimedia learning: effects of shape and color on affect and learning. Learn Instr. 2014;29:128–40. [DOI: 10.1016/j.learninstruc.2013.02.006]
  49. Peters E, Boyd P, Cameron LD, Contractor N, Diefenbach MA, Fleszar-Pavlovic S, et al. Evidence-based recommendations for communicating the impacts of climate change on health. Transl Behav Med. 2022;12:543–53. [PMID: 35613000]
  50. Peters E, Lipkus I, Diefenbach MA. The Functions of Affect in Health Communications and in the construction of Health preferences. J Commun. 2006;56:S140–62. [DOI: 10.1111/j.1460-2466.2006.00287.x]
  51. Hegarty M, Canham MS, Fabrikant SI. Thinking about the weather: how display salience and knowledge affect performance in a graphic inference task. J Exp Psychol Learn Mem Cogn. 2010;36:37–53. [PMID: 20053043]
  52. DiBiase D. Visualization in the earth sciences. Earth Min Sci. 1990;59:13–8.
  53. Maceachren AM. Chapter 1 - visualization in Modern Cartography: setting the agenda. In: Maceachren AM, Taylor DRF, editors. Mod cartogr ser. Academic; 1994. pp. 1–12.
  54. Tversky B. Visuospatial reasoning. Camb Handb think reason. New York, NY, US: Cambridge University Press; 2005. pp. 209–40.
  55. Morita T. Reflections on the works of Jacques Bertin: from sign theory to Cartographic Discourse. Cartogr J. 2011;48:86–91. [DOI: 10.1179/000870411X13038059668604]
  56. Fabrikant SI, Hespanha SR, Hegarty M. Cognitively inspired and perceptually salient Graphic displays for efficient spatial inference making. Ann Assoc Am Geogr. 2010;100:13–29. [DOI: 10.1080/00045600903362378]
  57. Bertin J. Semiology of graphics. University of Wisconsin; 1983.
  58. Limpisathian P. Evaluating Visual Contrast and Hierarchy Relations of Cartographic Features Across Multi-Scale Map Displays [Internet]. The Pennsylvania State University; 2017. https://etda.libraries.psu.edu/catalog/14410pwl5119
  59. Padilla LM, Ruginski IT, Creem-Regehr SH. Effects of ensemble and summary displays on interpretations of geospatial uncertainty data. Cogn Res Princ Implic. 2017;2:40. [PMID: 29051918]
  60. Canham M, Hegarty M. Effects of knowledge and display design on comprehension of complex graphics. Learn Instr. 2010;20:155–66. [DOI: 10.1016/j.learninstruc.2009.02.014]
  61. Montello DR, Fabrikant SI, Davies C. Cognitive perspectives on cartography and other geographic information visualizations. Handb Behav Cogn Geogr. 2018;177–96.
  62. Maceachren AM, Ganter JH. A pattern identification approach to cartographic visualization. Cartogr Int J Geogr Inf Geovisualization. 1990;27:64–81.
  63. Hegarty M. Diagrams in the mind and in the World: relations between internal and external visualizations. In: Blackwell AF, Marriott K, Shimojima A, editors. Diagrammatic represent inference. Berlin, Heidelberg: Springer; 2004. pp. 1–13.
  64. Falschlunger L, Treiblmaier H, Lehner O, Grabmann E. Cognitive differences and their impact on information perception: an empirical study combining Survey and Eye Tracking Data. In: Davis FD, Riedl R, vom Brocke J, Léger P-M, Randolph AB, editors. Inf Syst Neurosci. Cham: Springer International Publishing; 2015. pp. 137–44.
  65. Lloyd R. Chapter 6 cognitive processes and cartographic maps. In: Gärling T, Golledge RG, editors. Adv Psychol. North-Holland; 1993. pp. 141–69.
  66. Koenig A, Samarasundera E, Cheng T. Interactive map communication: pilot study of the visual perceptions and preferences of public health practitioners. Public Health. 2011;125:554–60. [PMID: 21782202]
  67. Hegarty M, Smallman HS, Stull AT. Choosing and using geospatial displays: effects of design on performance and metacognition. J Exp Psychol Appl. 2012;18:1–17. [PMID: 22250838]
  68. Christen M, Brugger P, Fabrikant SI. Susceptibility of domain experts to color manipulation indicate a need for design principles in data visualization. PLoS ONE. 2021;16:e0246479. [PMID: 33539461]
  69. Lor M. Color-encoding visualizations as a tool to assist a nonliterate population in completing health survey responses. Inf Health Soc CARE. 2020;45:31–42. [DOI: 10.1080/17538157.2018.1540422]
  70. Richards DP, Jacobson EE. How real is too real? User-testing the effects of Realism as a risk communication strategy in Sea Level rise visualizations. Tech Commun Q. 2022;31:190–206. [DOI: 10.1080/10572252.2021.1986135]
  71. Dransch D, Rotzoll H, Poser K. The contribution of maps to the challenges of risk communication to the public. Int J Digit Earth. 2010;3:292–311. [DOI: 10.1080/17538941003774668]
  72. Muehlenhaus I. The design and composition of persuasive maps. Cartogr Geogr Inf Sci. 2013;40:401–14. [DOI: 10.1080/15230406.2013.783450]
  73. Brewer CA. Color Use guidelines for Mapping and visualization. In: MacEachren AM, Taylor DRF, editors. Vis mod Cartogr. Tarrytown, NY: Elsevier; 1994. pp. 123–48.
  74. Muehlenhaus I. If looks could kill: the impact of different rhetorical styles on Persuasive Geocommunication. Cartogr J. 2012;49:361–75. [DOI: 10.1179/1743277412Y.0000000032]
  75. Fagerlin A, Valley TS, Scherer AM, Knaus M, Das E, Zikmund-Fisher BJ. Communicating infectious disease prevalence through graphics: results from an international survey. Vaccine. 2017;35:4041–7. [PMID: 28647168]
  76. Kostelnick C. The Re-emergence of Emotional appeals in Interactive Data visualization. Tech Commun. 2016;63:116–35.
  77. Lan X, Wu Y, Cao N. Affective visualization design: leveraging the emotional impact of data. IEEE Trans Vis Comput Graph. 2024;30:1–11. [PMID: 37903043]
  78. Garlandini S, Fabrikant SI. Evaluating the effectiveness and Efficiency of Visual Variables for Geographic Information Visualization. Spat Inf Theory. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. pp. 195–211.
  79. Severtson DJ, Myers JD. The influence of Uncertain Map features on risk beliefs and Perceived Ambiguity for maps of Modeled Cancer Risk from Air Pollution: influence of Map features on beliefs and ambiguity. Risk Anal. 2013;33:818–37. [PMID: 22985196]
  80. Warden AC, Witt JK, Szafir DA. Visualizing temperature trends: higher sensitivity to trend direction with single-hue palettes. J Exp Psychol Appl. 2022;28:717–45. [PMID: 35175091]
  81. Sibrel SC, Rathore R, Lessard L, Schloss KB. The relation between color and spatial structure for interpreting colormap data visualizations. J Vis. 2020;20:7. [PMID: 33201220]
  82. Cheong L, Kinkeldey C, Burfurd I, Bleisch S, Duckham M. Evaluating the impact of visualization of risk upon emergency route-planning. Int J Geogr Inf Sci. 2020;34:1022–50. [DOI: 10.1080/13658816.2019.1701677]
  83. Engeset RV, Pfuhl G, Orten C, Hendrikx J, Hetland A. Colours and maps for communicating natural hazards to users with and without colour vision deficiency. Int J Disaster Risk Reduct. 2022;76:103034. [DOI: 10.1016/j.ijdrr.2022.103034]
  84. Klettner S. Affective Communication of Map symbols: a semantic Differential Analysis. ISPRS Int J GEO-Inf. 2020;9.
  85. Klettner S. Why shape MattersOn the inherent qualities of geometric shapes for cartographic representations. ISPRS Int J GEO-Inf. 2019;8.
  86. Cao Y, Boruff BJ, McNeill IM. Is a picture worth a thousand words? Evaluating the effectiveness of maps for delivering wildfire warning information. Int J Disaster Risk Reduct. 2016;19:179–96. [DOI: 10.1016/j.ijdrr.2016.08.012]
  87. Ash KD, Schumann RL, Bowser GC. Tornado warning Trade-Offs: evaluating choices for visually communicating risk. Weather Clim Soc. 2014;6:104–18. [DOI: 10.1175/WCAS-D-13-00021.1]
  88. Lan Y, Tang W, Dye S, Delmelle E. A web-based spatial decision support system for monitoring the risk of water contamination in private wells. Ann GIS. 2020;26:293–309. [DOI: 10.1080/19475683.2020.1798508]
  89. Boone AP, Gunalp P, Hegarty M. Explicit versus actionable knowledge: the influence of explaining graphical conventions on interpretation of hurricane forecast visualizations. J Exp Psychol Appl. 2018;24:275–95. [PMID: 29963882]
  90. Patterson RE. Cognitive engineering, cognitive augmentation, and information display. J Soc Inf Disp. 2012;20:208–13. [DOI: 10.1889/JSID20.4.208]
  91. MacEachren AM. Chapter 4: how maps are understood. Maps work represent Vis Des. Guilford Press; 2004. pp. 150–212.
  92. Haynes K, Barclay J, Pidgeon N. Volcanic hazard communication using maps: an evaluation of their effectiveness. Bull Volcanol. 2007;70:123–38. [DOI: 10.1007/s00445-007-0124-7]
  93. Zhu J, Zhang J, Zhu Q, Li W, Wu J, Guo Y. A knowledge-guided visualization framework of disaster scenes for helping the public cognize risk information. Int J Geogr Inf Sci. 2024;38:626–53. [DOI: 10.1080/13658816.2023.2298299]
  94. Strathie A, Netto G, Walker Gh, Pender G. How presentation format affects the interpretation of probabilistic flood risk information. J Flood Risk Manag. 2017;10:87–96. [DOI: 10.1111/jfr3.12152]
  95. Wong C, Wu H-C, Cleary EG, Patton AP, Xie A, Grinstein G, et al. Visualizing Air Pollution: Communication of Environmental Health Information in a Chinese immigrant community. J Health Commun. 2019;24:339–58. [PMID: 31030632]
  96. Herring J, VanDyke MS, Cummins RG, Melton F. Communicating local Climate risks Online through an interactive data visualization. Environ Commun. 2017;11:90–105. [DOI: 10.1080/17524032.2016.1176946]
  97. Retchless DP. Understanding local sea level rise risk perceptions and the power of maps to change them: the effects of Distance and doubt. Environ Behav. 2018;50:483–511. [DOI: 10.1177/0013916517709043]
  98. Severtson DJ, Vatovec C. The theory-based influence of Map features on risk beliefs: self-reports of what is seen and understood for maps depicting an Environmental Health Hazard. J Health Commun. 2012;17:836–56. [PMID: 22715919]
  99. Preston A, Ma K-L. Communicating uncertainty and risk in Air Quality maps. IEEE Trans Vis Comput Graph. 2023;29:3746–57. [PMID: 35486550]
  100. Klockow-McClain KE, McPherson RA, Thomas RP. Cartographic Design for Improved decision making: trade-offs in uncertainty visualization for Tornado threats. Ann Am Assoc Geogr. 2020;110:314–33.
  101. Lieske DJ, Wade T, Roness LA. Climate change awareness and strategies for communicating the risk of coastal flooding: a Canadian Maritime case example. Estuar Coast Shelf Sci. 2014;140:83–94. [DOI: 10.1016/j.ecss.2013.04.017]
  102. Heggli A, Hatchett B, Tolby Z, Lambrecht K, Collins M, Olman L, et al. Visual Communication of Probabilistic Information to enhance decision support. Bull Am Meteorol Soc. 2023;104:E1533–51. [DOI: 10.1175/BAMS-D-22-0220.1]
  103. Jon I, Huang S, Lindell MK. Perceptions and expected Immediate reactions to severe storm displays. Risk Anal. 2019;39:274–90. [PMID: 29119587]
  104. Thompson Clive MA, Lindsay JM, Leonard GS, Lutteroth C, Bostrom A, Corballis P. Volcanic hazard map visualisation affects cognition and crisis decision-making. Int J Disaster Risk Reduct. 2021;55:102102. [DOI: 10.1016/j.ijdrr.2021.102102]
  105. Fabrikant SI, Skupin A. Chapter 35 - cognitively plausible information visualization. In: Dykes J, MacEachren AM, Kraak M-J, editors. Explor Geovisualization. Oxford: Elsevier; 2005. pp. 667–90. [DOI: 10.1016/B978-008044531-1/50453-X]
  106. Wyoming State Geological Survey. Wyoming Geologic Hazards Map [Internet]. [cited 2024 May 20]. https://portal.wsgs.wyo.gov/arcgis/apps/webappviewer/index.html?id=52526188fee5489fa1db6c13a903b26a&extent=-13053376.3672%2C4809381.9985%2C-10705230.8583%2C5884392.3643%2C102100&showLayers=Earthquakes_1312_1%3BLandslides_9386_0%3BLandslides_9386_1%3BFaults_1822_0%3BOtherHazards_332_0%3BOtherHazards_332_1%3BRadon_5253%3BRadon_5253_0%3BRadon_5253_1%3BRadon_5253_2%3BLsSusceptibility_3250_0%3BBaseLayersWSGS_4208_1%3BBaseLayersWSGS_4208_2%3BBaseLayersWSGS_4208_4%3BBaseLayersWSGS_4208_5%3BBaseLayersWSGS_4208_13%3BBaseLayersWSGS_4208_14%3BBaseLayersWSGS_4208_16%3BBaseLayersWSGS_4208_20%3BBaseLayersWSGS_4208_27%3BBaseLayersWSGS_4208_32
  107. Lindsay JM, Charlton D, Clive MAT, Bertin D, Ogburn S, Wright H, et al. The diversity of volcanic hazard maps around the world: insights from map makers. J Appl Volcanol. 2023;12:8. [DOI: 10.1186/s13617-023-00134-5]
  108. Ancker JS, Senathirajah Y, Kukafka R, Starren JB. Design features of graphs in health risk communication: a systematic review. J Am Med Inf Assoc. 2006;13:608–18. [DOI: 10.1197/jamia.M2115]
  109. Lorenz S, Dessai S, Forster PM, Paavola J. Tailoring the visual communication of climate projections for local adaptation practitioners in Germany and the UK. Philos Trans R Soc Math Phys Eng Sci. 2015;373:20140457.
  110. Wu DTY, Chen AT, Manning JD, Levy-Fix G, Backonja U, Borland D, et al. Evaluating visual analytics for health informatics applications: a systematic review from the American Medical Informatics Association Visual Analytics Working Group Task Force on evaluation. J Am Med Inf Assoc. 2019;26:314–23. [DOI: 10.1093/jamia/ocy190]
  111. Crameri F, Shephard GE, Heron PJ. The misuse of colour in science communication. Nat Commun. 2020;11:5444. [PMID: 33116149]
  112. US EPA O. Search for Superfund Sites Where You Live [Internet]. 2023 [cited 2024 May 20]. https://www.epa.gov/superfund/search-superfund-sites-where-you-live
  113. Ordnance Survey. Flood map for planning [Internet]. 2021 [cited 2024 May 20]. https://flood-map-for-planning.service.gov.uk
  114. Harrower M. The cognitive limits of animated maps. Cartogr Int J Geogr Inf Geovisualization. 2007;42:349–57.
  115. Hegarty M, Kriz S. Effects of knowledge and spatial ability on learning from animation. Learn Animat Res Implic Des. New York, NY, US: Cambridge University Press; 2008. pp. 3–29.
  116. Hegarty M. The Cognitive Science of visual-spatial displays: implications for design. Top Cogn Sci. 2011;3:446–74. [PMID: 25164399]
  117. Wilkening J, Fabrikant SI. How do decision time and realism affect map-based decision making? In: Egenhofer M, Giudice N, Moratz R, Worboys M, editors. Spat Inf Theory. Berlin, Heidelberg: Springer; 2011. pp. 1–19.
  118. Cheong L, Bleisch S, Kealy A, Tolhurst K, Wilkening T, Duckham M. Evaluating the impact of visualization of wildfire hazard upon decision-making under uncertainty. Int J Geogr Inf Sci. 2016;30:1377–404. [DOI: 10.1080/13658816.2015.1131829]
  119. Lazard A, Atkinson L. Putting environmental infographics center stage: the role of visuals at the elaboration likelihood model’s critical point of persuasion. Sci Commun. 2015;37:6–33. [DOI: 10.1177/1075547014555997]
  120. Lobben A, Brittell ME, Perdue NA. Inclusive Cartographic Design: Overcoming Ocular-Centric Cartographies. In: Robbi Sluter C, Madureira Cruz CB, Leal de Menezes PM, editors. Cartogr - Maps Connect World 27th Int Cartogr Conf 2015 - ICC2015 [Internet]. Cham: Springer International Publishing; 2015 [cited 2024 Aug 6]. pp. 89–98. https://doi.org/10.1007/978-3-319-17738-0_7
  121. Cabric F, Bjarnadóttir MV, Ling M, Rafnsdóttir GL, Isenberg P. Eleven years of gender data visualization: a step towards more inclusive gender representation. IEEE Trans Vis Comput Graph. 2024;30:316–26. [PMID: 37910407]
  122. English PB, Richardson MJ, Garzón-Galvis C. From crowdsourcing to Extreme Citizen Science: Participatory Research for Environmental Health. Annu Rev Public Health. 2018;39:335–50. [PMID: 29608871]
  123. Cochrane L, Corbett J. Participatory Mapping. In: Servaes J, editor. Handb Commun Dev Soc Change [Internet]. Singapore: Springer; 2020. pp. 705–13. https://doi.org/10.1007/978-981-15-2014-3_6
  124. Reid G, Sieber RE. Learning from critiques of GIS for assessing the geoweb and indigenous knowledges. GeoJournal. 2022;87:875–93. [DOI: 10.1007/s10708-020-10285-2]
  125. Huang G, London JK. Mapping in and out of messes: an adaptive, participatory, and transdisciplinary approach to assessing cumulative environmental justice impacts. Landsc Urban Plan. 2016;154:57–67. [DOI: 10.1016/j.landurbplan.2016.02.014]
  126. Wilson SM, Murray RT, Jiang C, Dalemarre L, Burwell-Naney K, Fraser-Rahim H. Environmental Justice Radar: A Tool for Community-based mapping to increase environmental awareness and participatory decision making. Prog Community Health Partnersh Res Educ Action. 2015;9:439–46. [DOI: 10.1353/cpr.2015.0066]
  127. Kanjo E. NoiseSPY: a real-time mobile phone platform for urban noise monitoring and mapping. Mob Netw Appl. 2010;15:562–74. [DOI: 10.1007/s11036-009-0217-y]
  128. Martell M, Perko T, Tomkiv Y, Long S, Dowdall A, Kenens J. Evaluation of citizen science contributions to radon research. J Environ Radioact. 2021;237:106685. [PMID: 34265518]
  129. Kostelnick JC, McDermott D, Rowley RJ, Bunnyfield N. A Cartographic Framework for visualizing risk. Cartogr Int J Geogr Inf Geovisualization. 2013;48:200–24.
  130. Macchione F, Costabile P, Costanzo C, De Santis R. Moving to 3-D flood hazard maps for enhancing risk communication. Environ Model Softw. 2019;111:510–22. [DOI: 10.1016/j.envsoft.2018.11.005]
  131. Simpson M, Padilla L, Keller K, Klippel A. Immersive storm surge flooding: scale and risk perception in virtual reality. J Environ Psychol. 2022;101764.
  132. Pochwatko G, Świdrak J, Kopeć W, Jȩdrzejewski Z, Feledyn A, Vogt M, et al. Multisensory representation of Air Pollution in virtual reality: lessons from visual representation. In: Biele C, Kacprzyk J, Kopeć W, Owsiński JW, Romanowski A, Sikorski M, editors. Digit Interact Mach Intell. Cham: Springer International Publishing; 2022. pp. 239–47.

Grants

  1. N/A/Banting Postdoctoral Fellowship
  2. N/A/Center for Science Communication Research in the School of Journalism and Communication at the University of Oregon
  3. SES-2017651/National Science Foundation

MeSH Term

Humans
Environmental Health
Health Literacy
Health Education
Environmental Exposure

Word Cloud

Created with Highcharts 10.0.0healthgeovisualizationsenvironmentalusingpromotepublicrisksawarenessaroundhazardsactionsexposuresinformationhazardreviewkeyliteracyeducationcommunicationvisualleveragingemotionstrategiesevidence-basedGeovisualizationsEnvironmentalPURPOSEOFREVIEW:InformingcrucialraisingpromotingminimizeGeographicvisualizations-geovisualizations-havebecomeincreasinglycommonwaydisseminateweb-baseddisplayingspatialvariationsoutcomesmapUnfortunatelyineffectivecanresultinaccurateinferencesleadingmisguidedpoliciesnarrativediscussconsiderationsuseRECENTFINDINGS:ManyconventionalusedriskfailconsiderpeopleprocessDesignchoicespromptviewersthinkfeelprocessesindividualattentionmemoryimprovedcomprehensiondecisionmakingBasedstudiesreviewedrecommendsixdesigningeffectivesynthesizingevidencecognitivesciencescartographyinclude:DisplayingdatatailoringtestingdesiredaudiencesalientcuesaidingpatternrecognitionlimitingdistractionsofferpromisingavenueadvancingfosteringproactivemeasuresaddressingcomplexchallengeshighlightsincorporatingdesignprinciplesexperimentalresearchevaluatinginterdisciplinaryapproachesneededUsingEducatePublicHealthHazards:WorksWhyExposuremitigationGeovisualizationHazardMapsRisk

Similar Articles

Cited By