Zebrafish Models for Skeletal and Extraskeletal Osteogenesis Imperfecta Features: Unveiling Pathophysiology and Paving the Way for Drug Discovery.

Cecilia Masiero, Carla Aresi, Antonella Forlino, Francesca Tonelli
Author Information
  1. Cecilia Masiero: Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy. ORCID
  2. Carla Aresi: Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy. ORCID
  3. Antonella Forlino: Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy. antonella.forlino@unipv.it. ORCID
  4. Francesca Tonelli: Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy. ORCID

Abstract

In the last decades, the easy genetic manipulation, the external fertilization, the high percentage of homology with human genes and the reduced husbandry costs compared to rodents, made zebrafish a valid model for studying human diseases and for developing new therapeutical strategies. Since zebrafish shares with mammals the same bone cells and ossification types, it became widely used to dissect mechanisms and possible new therapeutic approaches in the field of common and rare bone diseases, such as osteoporosis and osteogenesis imperfecta (OI), respectively. OI is a heritable skeletal disorder caused by defects in gene encoding collagen I or proteins/enzymes necessary for collagen I synthesis and secretion. Nevertheless, OI patients can be also characterized by extraskeletal manifestations such as dentinogenesis imperfecta, muscle weakness, cardiac valve and pulmonary abnormalities and skin laxity. In this review, we provide an overview of the available zebrafish models for both dominant and recessive forms of OI. An updated description of all the main similarities and differences between zebrafish and mammal skeleton, muscle, heart and skin, will be also discussed. Finally, a list of high- and low-throughput techniques available to exploit both larvae and adult OI zebrafish models as unique tools for the discovery of new therapeutic approaches will be presented.

Keywords

References

  1. Bone Res. 2021 Aug 31;9(1):39 [PMID: 34465741]
  2. Circ Res. 2020 Feb 14;126(4):417-435 [PMID: 31805819]
  3. Science. 2016 Jan 29;351(6272):aad2197 [PMID: 26823433]
  4. J Biol Chem. 2016 Jun 10;291(24):12601-12611 [PMID: 27129238]
  5. J Bone Miner Res. 2014 Nov;29(11):2346-56 [PMID: 24806738]
  6. Genetics. 2017 Oct;207(2):609-623 [PMID: 28835471]
  7. Development. 2016 Jun 15;143(12):2066-76 [PMID: 27122168]
  8. Int J Dev Biol. 2004;48(2-3):217-31 [PMID: 15272388]
  9. PLoS One. 2012;7(9):e45380 [PMID: 23028974]
  10. Development. 2013 Feb 1;140(3):617-26 [PMID: 23293293]
  11. Biochim Biophys Acta Mol Basis Dis. 2018 May;1864(5 Pt A):1642-1652 [PMID: 29432813]
  12. J Hazard Mater. 2024 Jun 5;471:134357 [PMID: 38643584]
  13. Cell Mol Life Sci. 2014 Aug;71(16):3081-99 [PMID: 24664432]
  14. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D599-601 [PMID: 16381939]
  15. Dev Biol. 2020 Jan 15;457(2):191-205 [PMID: 31325453]
  16. Expert Opin Drug Discov. 2014 Sep;9(9):1033-45 [PMID: 24931439]
  17. Front Aging Neurosci. 2015 Aug 25;7:161 [PMID: 26379543]
  18. Discoveries (Craiova). 2021 Mar 31;9(1):e124 [PMID: 34036147]
  19. Essays Biochem. 2012;52:113-33 [PMID: 22708567]
  20. Methods Cell Biol. 2017;138:321-346 [PMID: 28129851]
  21. Hum Mol Genet. 2012 Aug 15;21(16):3535-45 [PMID: 22589248]
  22. Nature. 2013 Apr 25;496(7446):494-7 [PMID: 23594742]
  23. Dis Model Mech. 2019 Jun 20;12(6): [PMID: 31171565]
  24. J Bone Miner Res. 2001 Jun;16(6):1147-53 [PMID: 11393792]
  25. Development. 2003 Apr;130(7):1339-51 [PMID: 12588850]
  26. Matrix Biol. 2023 Aug;121:105-126 [PMID: 37336269]
  27. Development. 2015 May 15;142(10):1733-44 [PMID: 25968309]
  28. Organogenesis. 2022 Dec 31;18(1):1-19 [PMID: 35023442]
  29. Trends Genet. 2017 Mar;33(3):183-196 [PMID: 28174019]
  30. Genetics. 2022 Apr 4;220(4): [PMID: 35166825]
  31. PLoS One. 2012;7(11):e47394 [PMID: 23155370]
  32. Development. 1997 Aug;124(15):2945-60 [PMID: 9247337]
  33. Int J Mol Sci. 2019 Aug 19;20(16): [PMID: 31430857]
  34. PLoS Genet. 2023 Nov 7;19(11):e1011005 [PMID: 37934770]
  35. Genome Res. 2003 Dec;13(12):2700-7 [PMID: 14613981]
  36. Mech Dev. 2013 Sep-Oct;130(9-10):447-57 [PMID: 23811405]
  37. J Clin Endocrinol Metab. 2017 Jun 1;102(6):2019-2028 [PMID: 28323974]
  38. Nature. 2013 Jun 27;498(7455):497-501 [PMID: 23783515]
  39. Dev Genes Evol. 2024 Jul 30;: [PMID: 39079985]
  40. J Appl Physiol (1985). 2020 Mar 1;128(3):648-659 [PMID: 31999527]
  41. Cells Tissues Organs. 2004;176(1-3):17-27 [PMID: 14745232]
  42. Curr Opin Pediatr. 2019 Dec;31(6):708-715 [PMID: 31693577]
  43. Front Endocrinol (Lausanne). 2023 Jan 23;14:1002914 [PMID: 36755921]
  44. Sci Rep. 2016 Feb 15;6:21540 [PMID: 26876635]
  45. Development. 2019 Sep 20;146(18): [PMID: 31540899]
  46. Sci Total Environ. 2022 Nov 20;848:157665 [PMID: 35907527]
  47. Commun Biol. 2023 Apr 12;6(1):367 [PMID: 37046052]
  48. J Dev Biol. 2021 Sep 25;9(4): [PMID: 34698193]
  49. Development. 1996 Nov;122(11):3371-80 [PMID: 8951054]
  50. Development. 2008 Nov;135(22):3789-99 [PMID: 18842815]
  51. Cell Mol Life Sci. 2022 Sep 4;79(9):506 [PMID: 36059018]
  52. Am J Hum Genet. 2015 Mar 5;96(3):432-9 [PMID: 25683121]
  53. J Cell Sci. 2009 Sep 15;122(Pt 18):3209-13 [PMID: 19726630]
  54. Bone. 2015 May;74:106-13 [PMID: 25600250]
  55. Front Endocrinol (Lausanne). 2023 Nov 17;14:1331690 [PMID: 38053724]
  56. Mol Cell Proteomics. 2019 Sep;18(9):1745-1755 [PMID: 31221719]
  57. Cell Biosci. 2019 Oct 16;9:85 [PMID: 31636894]
  58. Exp Gerontol. 2002 Aug-Sep;37(8-9):1055-68 [PMID: 12213556]
  59. Front Cell Dev Biol. 2020 Oct 29;8:595488 [PMID: 33251221]
  60. Am J Hum Genet. 2013 Dec 5;93(6):1118-25 [PMID: 24268655]
  61. Development. 2007 Sep;134(17):3145-53 [PMID: 17670792]
  62. J Invest Dermatol. 2014 Jun;134(6):1-6 [PMID: 24825064]
  63. J Vis Exp. 2016 Oct 31;(116): [PMID: 27842370]
  64. Comp Biochem Physiol C Toxicol Pharmacol. 2007 Feb;145(1):28-38 [PMID: 17240199]
  65. Antibiotics (Basel). 2022 Aug 04;11(8): [PMID: 36009928]
  66. PLoS Genet. 2016 Jul 21;12(7):e1006156 [PMID: 27441836]
  67. Toxicol Sci. 2019 Oct 1;171(2):283-295 [PMID: 31359052]
  68. Development. 1996 Dec;123:357-67 [PMID: 9007255]
  69. J Bone Miner Res. 2014 Jun;29(6):1412-23 [PMID: 24443344]
  70. Hum Mol Genet. 2017 Aug 1;26(15):2897-2911 [PMID: 28475764]
  71. Mol Genet Genomic Med. 2018 May;6(3):339-349 [PMID: 29512331]
  72. Cell Syst. 2020 Mar 25;10(3):275-286.e5 [PMID: 32191876]
  73. Dev Biol. 2003 Dec 1;264(1):64-76 [PMID: 14623232]
  74. Am J Hum Genet. 2012 Apr 6;90(4):661-74 [PMID: 22482805]
  75. Blood. 2010 Aug 12;116(6):909-14 [PMID: 20453160]
  76. J Biol Chem. 2010 May 28;285(22):17253-62 [PMID: 20363744]
  77. Dev Cell. 2016 Jan 11;36(1):36-49 [PMID: 26748692]
  78. J Pathol Bacteriol. 1961 Oct;82:303-14 [PMID: 14481980]
  79. N Z Vet J. 1992 Sep;40(3):112-6 [PMID: 16031672]
  80. PLoS One. 2011;6(9):e24764 [PMID: 21966365]
  81. PLoS One. 2011;6(12):e28358 [PMID: 22174793]
  82. Curr Opin Genet Dev. 2007 Aug;17(4):359-66 [PMID: 17644373]
  83. Int J Mol Sci. 2023 May 05;24(9): [PMID: 37176020]
  84. Dev Dyn. 2009 Dec;238(12):2975-3015 [PMID: 19891001]
  85. Development. 2013 Apr;140(8):1740-50 [PMID: 23533174]
  86. Can Vet J. 2007 Mar;48(3):296-8 [PMID: 17436908]
  87. Cell Tissue Res. 2011 Dec;346(3):439-49 [PMID: 22086205]
  88. Hum Genome Var. 2023 Sep 11;10(1):25 [PMID: 37696855]
  89. Heart Lung Circ. 2013 Oct;22(10):801-10 [PMID: 23791715]
  90. Bone. 2002 Apr;30(4):541-6 [PMID: 11934643]
  91. Sci Signal. 2016 May 17;9(428):ra49 [PMID: 27188440]
  92. Bone. 2011 Dec;49(6):1242-54 [PMID: 21907838]
  93. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4238-4243 [PMID: 30770441]
  94. Micron. 2001 Apr;32(3):223-37 [PMID: 11006503]
  95. Comp Biochem Physiol C Toxicol Pharmacol. 2017 Jul;197:45-52 [PMID: 28457946]
  96. Analyst. 2021 Dec 6;146(24):7464-7490 [PMID: 34786574]
  97. Nucleic Acids Res. 2024 Jan 5;52(D1):D891-D899 [PMID: 37953337]
  98. Nord Vet Med. 1976 Jun;28(6):304-8 [PMID: 940738]
  99. Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):E8037-E8046 [PMID: 30082390]
  100. Circ Res. 2022 Jun 10;130(12):1803-1826 [PMID: 35679360]
  101. Sci Rep. 2017 Sep 13;7(1):11466 [PMID: 28904385]
  102. Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2209231119 [PMID: 36417434]
  103. BMC Biol. 2022 Jan 21;20(1):21 [PMID: 35057801]
  104. Ann Transl Med. 2018 May;6(10):173 [PMID: 29951495]
  105. Eur J Hum Genet. 2009 Dec;17(12):1560-9 [PMID: 19550437]
  106. J Bone Miner Res. 2018 Aug;33(8):1489-1499 [PMID: 29665086]
  107. Development. 2008 Jun;135(12):2115-26 [PMID: 18480160]
  108. Neurotoxicol Teratol. 2012 Jul;34(4):425-33 [PMID: 22484456]
  109. PLoS One. 2013 Sep 24;8(9):e75787 [PMID: 24086633]
  110. Methods Cell Biol. 2016;133:55-68 [PMID: 27263408]
  111. Dev Dyn. 1997 Aug;209(4):377-86 [PMID: 9264261]
  112. Exp Cell Res. 2005 Jun 10;306(2):336-42 [PMID: 15925589]
  113. PLoS Genet. 2017 Jul 17;13(7):e1006918 [PMID: 28715414]
  114. Development. 2020 Oct 6;147(21): [PMID: 33023886]
  115. PLoS Biol. 2010 Dec 14;8(12):e1000562 [PMID: 21179501]
  116. Stem Cells Int. 2018 Mar 11;2018:7549160 [PMID: 29713351]
  117. Dev Dyn. 2009 Feb;238(2):459-66 [PMID: 19161246]
  118. Methods Cell Biol. 2011;105:239-55 [PMID: 21951533]
  119. Dis Model Mech. 2022 May 1;15(5): [PMID: 35575034]
  120. J Bone Miner Res. 2019 Sep;34(9):1646-1659 [PMID: 30908713]
  121. Nat Genet. 2002 May;31(1):106-10 [PMID: 11967535]
  122. Development. 2005 Sep;132(18):4193-204 [PMID: 16107477]
  123. Bioessays. 2005 Sep;27(9):937-45 [PMID: 16108068]
  124. BMC Musculoskelet Disord. 2014 Dec 13;15:428 [PMID: 25494634]
  125. Curr Osteoporos Rep. 2018 Aug;16(4):478-489 [PMID: 29909596]
  126. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  127. Wound Repair Regen. 2017 May;25(3):432-442 [PMID: 28380670]
  128. Dev Dyn. 2009 Jun;238(6):1564-73 [PMID: 19322764]
  129. J Clin Invest. 2022 Apr 1;132(7): [PMID: 35113812]
  130. Nucleic Acids Res. 2013 Jan;41(Database issue):D48-55 [PMID: 23203987]
  131. Dev Biol. 2011 Jun 1;354(1):160-72 [PMID: 21420398]
  132. Dev Dyn. 2000 Nov;219(3):287-303 [PMID: 11066087]
  133. Cells. 2020 Aug 17;9(8): [PMID: 32824602]
  134. Dev Cell. 2001 Aug;1(2):265-75 [PMID: 11702785]
  135. J Morphol. 1996 Aug;229(2):121-160 [PMID: 29852585]
  136. Matrix Biol. 2023 Jun;120:43-59 [PMID: 37178987]
  137. Biol Rev Camb Philos Soc. 2009 May;84(2):315-46 [PMID: 19382934]
  138. J Biomol Screen. 2005 Dec;10(8):823-31 [PMID: 16234346]
  139. Cell Mol Biol (Noisy-le-grand). 2020 Dec 31;66(8):41-46 [PMID: 34174976]
  140. Biochem Biophys Res Commun. 2018 Feb 5;496(2):654-660 [PMID: 29305866]
  141. J Am Vet Med Assoc. 1990 Jul 1;197(1):98-100 [PMID: 2370230]
  142. Sci Rep. 2018 Feb 26;8(1):3646 [PMID: 29483529]
  143. J Exp Biol. 2011 May 15;214(Pt 10):1617-28 [PMID: 21525308]
  144. Hum Mutat. 2012 Oct;33(10):1444-9 [PMID: 22689593]
  145. Wiley Interdiscip Rev Dev Biol. 2017 Jan;6(1): [PMID: 27581688]
  146. Trends Genet. 2013 Nov;29(11):611-20 [PMID: 23927865]
  147. J Invest Dermatol. 2013 Jun;133(6):1655-65 [PMID: 23325040]
  148. PLoS One. 2010 Apr 28;5(4):e10367 [PMID: 20442775]
  149. Front Cell Dev Biol. 2020 Nov 16;8:600926 [PMID: 33304906]
  150. FEBS J. 2019 Aug;286(15):3033-3056 [PMID: 31220415]
  151. Nat Commun. 2020 Dec 2;11(1):6172 [PMID: 33268772]
  152. J Clin Endocrinol Metab. 2014 Feb;99(2):E356-62 [PMID: 24248189]
  153. Development. 2019 Oct 9;146(19): [PMID: 31427288]
  154. Cells Tissues Organs. 2005;181(2):109-18 [PMID: 16534205]
  155. J Cell Sci. 2005 Apr 1;118(Pt 7):1341-53 [PMID: 15788652]
  156. J Ultrastruct Res. 1967 Dec 12;21(3):222-32 [PMID: 5587785]
  157. Hum Mol Genet. 2010 Jun 15;19(12):2433-44 [PMID: 20338942]
  158. Zebrafish. 2016 Aug;13(4):310-6 [PMID: 27058023]
  159. Biochem Biophys Res Commun. 2020 Jan 8;521(2):310-317 [PMID: 31668813]
  160. Stem Cells. 2012 Jul;30(7):1465-76 [PMID: 22511244]
  161. Biochimie. 2022 May;196:171-181 [PMID: 34715269]
  162. Dev Biol. 2017 Apr 15;424(2):162-180 [PMID: 28279710]
  163. Dev Biol. 2016 May 15;413(2):160-72 [PMID: 26992365]
  164. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12748-53 [PMID: 18753619]
  165. Int J Exp Pathol. 2015 Feb;96(1):11-20 [PMID: 25603732]
  166. Front Endocrinol (Lausanne). 2020 Jul 31;11:489 [PMID: 32849280]
  167. Development. 2014 May;141(10):2035-45 [PMID: 24803652]
  168. Cell. 2002 Jan 11;108(1):17-29 [PMID: 11792318]
  169. Front Endocrinol (Lausanne). 2022 Oct 20;13:1004946 [PMID: 36339400]
  170. BMC Dev Biol. 2010 Nov 30;10:119 [PMID: 21118524]
  171. Nature. 2016 Oct 27;538(7626):537-541 [PMID: 27698420]
  172. Development. 2013 Nov;140(22):4602-13 [PMID: 24131632]
  173. Front Endocrinol (Lausanne). 2019 Jan 29;10:6 [PMID: 30761080]
  174. Matrix Biol. 2021 Apr;98:1-20 [PMID: 33798677]
  175. Sci Rep. 2018 May 10;8(1):7453 [PMID: 29748567]
  176. Calcif Tissue Int. 2015 Mar;96(3):183-95 [PMID: 25294644]
  177. Nat Commun. 2016 Apr 12;7:11303 [PMID: 27066836]
  178. Nature. 2010 Aug 12;466(7308):874-8 [PMID: 20657579]
  179. Zebrafish. 2018 Feb;15(1):1-8 [PMID: 29083959]
  180. J Biol Chem. 2010 Jan 22;285(4):2580-90 [PMID: 19940144]
  181. Curr Biol. 2013 Jul 8;23(13):1221-7 [PMID: 23791730]
  182. Elife. 2018 Oct 25;7: [PMID: 30375332]
  183. Dev Cell. 2020 Jan 27;52(2):167-182.e7 [PMID: 31866203]
  184. J Mol Histol. 2012 Oct;43(5):589-95 [PMID: 22661010]
  185. Nucleic Acids Res. 2019 Jan 8;47(D1):D867-D873 [PMID: 30407545]
  186. Development. 1996 Dec;123:255-62 [PMID: 9007245]
  187. Cell J. 2014 Summer;16(2):211-24 [PMID: 24567948]
  188. Front Endocrinol (Lausanne). 2022 Feb 24;13:851879 [PMID: 35282456]
  189. Dis Model Mech. 2019 Sep 3;12(9): [PMID: 31383797]
  190. Arch Oral Biol. 2001 Nov;46(11):1051-8 [PMID: 11543712]
  191. NPJ Regen Med. 2024 Feb 20;9(1):8 [PMID: 38378693]
  192. Hum Mutat. 2015 Feb;36(2):191-5 [PMID: 25402547]
  193. Mamm Genome. 2019 Apr;30(3-4):81-87 [PMID: 30788588]
  194. Cell Metab. 2011 Aug 3;14(2):231-41 [PMID: 21803293]
  195. Int J Mol Sci. 2020 Jul 30;21(15): [PMID: 32751494]
  196. BMC Dev Biol. 2016 Jan 19;16:2 [PMID: 26787303]
  197. PLoS One. 2011 Apr 12;6(4):e18503 [PMID: 21533269]
  198. J Bone Miner Res. 2016 Nov;31(11):1930-1942 [PMID: 27541483]
  199. Lab Anim Res. 2021 Sep 8;37(1):26 [PMID: 34496973]
  200. J Exp Biol. 1999 Dec;202(Pt 23):3397-403 [PMID: 10562522]
  201. Regul Toxicol Pharmacol. 2014 Aug;69(3):496-511 [PMID: 24874798]
  202. Development. 2005 Mar;132(5):1069-83 [PMID: 15689370]
  203. Immunity. 2006 Dec;25(6):963-75 [PMID: 17157041]
  204. Lancet. 2016 Apr 16;387(10028):1657-71 [PMID: 26542481]
  205. Biol Open. 2019 May 24;8(5): [PMID: 31126903]
  206. Cells. 2021 Jan 27;10(2): [PMID: 33513779]
  207. Genesis. 2011 May;49(5):410-8 [PMID: 21328521]
  208. Nat Rev Dis Primers. 2017 Aug 18;3:17052 [PMID: 28820180]
  209. Nature. 2013 Apr 25;496(7446):498-503 [PMID: 23594743]
  210. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21372-7 [PMID: 23236130]
  211. Dev Biol. 2002 Jan 1;241(1):106-16 [PMID: 11784098]
  212. Cell. 2021 Feb 18;184(4):899-911.e13 [PMID: 33545089]
  213. Matrix Biol. 2020 Aug;90:40-60 [PMID: 32173581]
  214. Arch Dermatol. 2002 Jul;138(7):909-11 [PMID: 12071818]
  215. Dev Cell. 2019 Mar 25;48(6):853-863.e5 [PMID: 30713073]
  216. Elife. 2017 Sep 08;6: [PMID: 28884682]
  217. J Exp Biol. 2019 Feb 8;222(Pt 3): [PMID: 30573664]
  218. Molecules. 2017 Nov 27;22(12): [PMID: 29186901]
  219. Am J Hum Genet. 2010 Jul 9;87(1):110-4 [PMID: 20579626]
  220. J Anat. 2016 Jul;229(1):92-103 [PMID: 27278890]
  221. FASEB J. 2020 Jan;34(1):1378-1397 [PMID: 31914689]
  222. Discov Oncol. 2022 Jun 17;13(1):48 [PMID: 35713744]
  223. J Invest Dermatol. 2013 Sep;133(9):2180-90 [PMID: 23549420]
  224. Matrix Biol. 2023 Aug;121:127-148 [PMID: 37348683]
  225. Development. 2016 Jun 15;143(12):2077-88 [PMID: 27122176]
  226. Hum Mutat. 2008 Dec;29(12):1435-42 [PMID: 18566967]

Grants

  1. Dipartimenti di Eccellenza (2023-2027)/Ministero dell'Università e della Ricerca
  2. PRIN 2022 20223C8C5B/Ministero dell'Istruzione, dell'Università e della Ricerca
  3. PON-React-EU Research/Ministero dell'Istruzione, dell'Università e della Ricerca
  4. Innovation 2014-2020/Ministero dell'Istruzione, dell'Università e della Ricerca
  5. r9/2020/Regione Lombardia
  6. resolution 3776/202000/Regione Lombardia

MeSH Term

Zebrafish
Osteogenesis Imperfecta
Animals
Disease Models, Animal
Drug Discovery
Humans

Word Cloud

Created with Highcharts 10.0.0zebrafishOInewimperfectahumandiseasesbonetherapeuticapproachescollagenalsomuscleskinavailablemodelswilldiscoveryZebrafishExtraskeletalOsteogenesisDruglastdecadeseasygeneticmanipulationexternalfertilizationhighpercentagehomologygenesreducedhusbandrycostscomparedrodentsmadevalidmodelstudyingdevelopingtherapeuticalstrategiesSincesharesmammalscellsossificationtypesbecamewidelyuseddissectmechanismspossiblefieldcommonrareosteoporosisosteogenesisrespectivelyheritableskeletaldisordercauseddefectsgeneencodingproteins/enzymesnecessarysynthesissecretionNeverthelesspatientscancharacterizedextraskeletalmanifestationsdentinogenesisweaknesscardiacvalvepulmonaryabnormalitieslaxityreviewprovideoverviewdominantrecessiveformsupdateddescriptionmainsimilaritiesdifferencesmammalskeletonheartdiscussedFinallylisthigh-low-throughputtechniquesexploitlarvaeadultuniquetoolspresentedModelsSkeletalImperfectaFeatures:UnveilingPathophysiologyPavingWayDiscoveryBonetissues

Similar Articles

Cited By