Ebola Virus Matrix Protein VP40 Single Mutations G198R and G201R Significantly Enhance Plasma Membrane Localization.

Michael D Cioffi, Tej Sharma, Balindile B Motsa, Nisha Bhattarai, Bernard S Gerstman, Robert V Stahelin, Prem P Chapagain
Author Information
  1. Michael D Cioffi: Department of Physics, Florida International University, Miami, Florida 33199, United States.
  2. Tej Sharma: Department of Physics, Florida International University, Miami, Florida 33199, United States.
  3. Balindile B Motsa: Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States.
  4. Nisha Bhattarai: Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States.
  5. Bernard S Gerstman: Department of Physics, Florida International University, Miami, Florida 33199, United States. ORCID
  6. Robert V Stahelin: Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States.
  7. Prem P Chapagain: Department of Physics, Florida International University, Miami, Florida 33199, United States. ORCID

Abstract

Viral proteins frequently undergo single or multiple amino acid mutations during replication, which can significantly alter their functionality. The Ebola virus matrix protein VP40 is multifunctional but primarily responsible for creating the viral envelope by binding to the inner leaflet of the host cell plasma membrane (PM). Changes to the VP40 surface cationic charge via mutations can influence PM interactions, resulting in altered viral assembly and budding. A recent mutagenesis study evaluated the effects of several mutations and found that mutations G198R and G201R enhanced VP40 assembly at the PM and virus-like particle budding. These two mutations lie in the loop region of the C-terminal domain (CTD), which directly interacts with the PM. To understand the role of these mutations in PM localization at the molecular level, we performed both all-atom and coarse-grained molecular dynamics simulations using a dimer-dimer configuration of VP40, which contains the CTD-CTD interface. Our studies indicate that the location of mutations on the outer surface of the CTD regions can lead to changes in membrane binding orientation and degree of membrane penetration. Direct PI(4,5)P interactions with the mutated residues seem to further stabilize and pull VP40 into the PM, thereby enhancing interactions with numerous amino acids that were otherwise infrequently or completely inaccessible. These multiscale computational studies provide new insights at the atomic and molecular level as to how VP40-PM interactions are altered through single amino acid mutations. Given the high case fatality rates associated with Ebola virus disease in humans, it is essential to explore the mechanisms of viral assembly in the presence of mutations to mitigate the severity of the disease and understand the potential of future outbreaks.

References

  1. Biophys J. 2001 Jan;80(1):505-15 [PMID: 11159421]
  2. Sci Rep. 2016 Jan 12;6:19125 [PMID: 26753796]
  3. EMBO J. 2000 Aug 15;19(16):4228-36 [PMID: 10944105]
  4. J Virol. 2018 Dec 10;93(1): [PMID: 30333174]
  5. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  6. J Chem Theory Comput. 2019 Jan 8;15(1):775-786 [PMID: 30525595]
  7. J Biol Chem. 2024 May;300(5):107213 [PMID: 38522519]
  8. J Chem Theory Comput. 2008 May;4(5):819-34 [PMID: 26621095]
  9. J Virol. 2001 Jun;75(11):5205-14 [PMID: 11333902]
  10. J Chem Theory Comput. 2016 May 10;12(5):2446-58 [PMID: 27042944]
  11. J Chem Theory Comput. 2015 Sep 8;11(9):4486-94 [PMID: 26575938]
  12. J Chem Theory Comput. 2019 Oct 8;15(10):5448-5460 [PMID: 31498621]
  13. J Biol Chem. 2013 Feb 22;288(8):5779-89 [PMID: 23297401]
  14. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  15. Science. 2014 Sep 12;345(6202):1369-72 [PMID: 25214632]
  16. North Clin Istanb. 2015 Apr 24;2(1):81-86 [PMID: 28058346]
  17. J Biol Chem. 2014 Nov 28;289(48):33590-7 [PMID: 25315776]
  18. J Biol Chem. 2018 Mar 2;293(9):3335-3349 [PMID: 29348171]
  19. Front Microbiol. 2014 Jun 18;5:300 [PMID: 24995005]
  20. N Engl J Med. 2014 Oct 9;371(15):1418-25 [PMID: 24738640]
  21. Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24 [PMID: 18216768]
  22. Future Virol. 2015 May;10(5):537-546 [PMID: 26120351]
  23. J Vis Exp. 2022 Mar 1;(181): [PMID: 35311814]
  24. Nat Methods. 2021 Apr;18(4):382-388 [PMID: 33782607]
  25. DNA Cell Biol. 2015 Jun;34(6):418-28 [PMID: 25803489]
  26. J Virol. 2015 Sep;89(18):9440-53 [PMID: 26136573]
  27. Biophys J. 2013 May 7;104(9):1940-9 [PMID: 23663837]
  28. J Chem Phys. 2020 Jul 28;153(4):044130 [PMID: 32752662]
  29. Biochem J. 1993 Aug 15;294 ( Pt 1):1-14 [PMID: 8363559]
  30. Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Apr;1869(3):159464 [PMID: 38360201]
  31. J Comput Chem. 2004 Oct;25(13):1584-604 [PMID: 15264253]
  32. Lancet. 1977 Mar 12;1(8011):569-71 [PMID: 65661]
  33. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  34. Viruses. 2014 Oct 17;6(10):3837-54 [PMID: 25330123]
  35. Cell Mol Life Sci. 2001 Nov;58(12-13):1826-41 [PMID: 11766882]
  36. Lancet. 2011 Mar 5;377(9768):849-62 [PMID: 21084112]
  37. Cell. 2013 Aug 15;154(4):763-74 [PMID: 23953110]
  38. J Virol. 2007 Oct;81(20):11452-60 [PMID: 17699576]
  39. Curr Protoc Protein Sci. 2016 Nov 1;86:2.9.1-2.9.37 [PMID: 27801516]
  40. J Mol Graph Model. 2018 Jun;82:137-144 [PMID: 29730487]
  41. Phys Chem Chem Phys. 2016 Oct 19;18(41):28409-28417 [PMID: 27757455]
  42. Protein Sci. 2000 Sep;9(9):1753-73 [PMID: 11045621]
  43. Elife. 2020 Oct 05;9: [PMID: 33016878]
  44. Viruses. 2021 Jul 15;13(7): [PMID: 34372582]
  45. J Comput Chem. 2013 Sep 30;34(25):2135-45 [PMID: 23832629]
  46. J Comput Chem. 2014 Oct 15;35(27):1997-2004 [PMID: 25130509]
  47. Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7803-7813 [PMID: 32213593]
  48. EMBO J. 2000 Dec 15;19(24):6732-41 [PMID: 11118208]
  49. J Phys Chem B. 2007 Jul 12;111(27):7812-24 [PMID: 17569554]

Grants

  1. R01 AI158220/NIAID NIH HHS

MeSH Term

Cell Membrane
Molecular Dynamics Simulation
Ebolavirus
Mutation
Viral Matrix Proteins
Viral Core Proteins
Nucleoproteins
Humans

Chemicals

nucleoprotein VP40, Ebola virus
Viral Matrix Proteins
Viral Core Proteins
Nucleoproteins
VP40 protein, virus

Word Cloud

Created with Highcharts 10.0.0mutationsVP40PMinteractionsaminocanEbolaviralmembraneassemblymolecularsingleacidvirusbindingsurfacealteredbuddingG198RG201RCTDunderstandlevelstudiesdiseaseViralproteinsfrequentlyundergomultiplereplicationsignificantlyalterfunctionalitymatrixproteinmultifunctionalprimarilyresponsiblecreatingenvelopeinnerleaflethostcellplasmaChangescationicchargeviainfluenceresultingrecentmutagenesisstudyevaluatedeffectsseveralfoundenhancedvirus-likeparticletwolieloopregionC-terminaldomaindirectlyinteractsrolelocalizationperformedall-atomcoarse-graineddynamicssimulationsusingdimer-dimerconfigurationcontainsCTD-CTDinterfaceindicatelocationouterregionsleadchangesorientationdegreepenetrationDirectPI45PmutatedresiduesseemstabilizepulltherebyenhancingnumerousacidsotherwiseinfrequentlycompletelyinaccessiblemultiscalecomputationalprovidenewinsightsatomicVP40-PMGivenhighcasefatalityratesassociatedhumansessentialexploremechanismspresencemitigateseveritypotentialfutureoutbreaksVirusMatrixProteinSingleMutationsSignificantlyEnhancePlasmaMembraneLocalization

Similar Articles

Cited By