Development and evaluation of a model for predicting the risk of healthcare-associated infections in patients admitted to intensive care units.

Jin Wang, Gan Wang, Yujie Wang, Yun Wang
Author Information
  1. Jin Wang: Department of Healthcare-Associated Infection Management, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
  2. Gan Wang: Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
  3. Yujie Wang: Department of Clinical Laboratory, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
  4. Yun Wang: Emergency Intensive Care Unit, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.

Abstract

This retrospective study used 10 machine learning algorithms to predict the risk of healthcare-associated infections (HAIs) in patients admitted to intensive care units (ICUs). A total of 2,517 patients treated in the ICU of a tertiary hospital in China from January 2019 to December 2023 were included, of whom 455 (18.1%) developed an HAI. Data on 32 potential risk factors for infection were considered, of which 18 factors that were statistically significant on single-factor analysis were used to develop a machine learning prediction model using the synthetic minority oversampling technique (SMOTE). The main HAIs were respiratory tract infections (28.7%) and ventilator-associated pneumonia (25.0%), and were predominantly caused by gram-negative bacteria (78.8%). The CatBoost model showed good predictive performance (area under the curve: 0.944, and sensitivity 0.872). The 10 most important predictors of HAIs in this model were the Penetration Aspiration Scale score, Braden score, high total bilirubin level, female, high white blood cell count, Caprini Risk Score, Nutritional Risk Screening 2002 score, low eosinophil count, medium white blood cell count, and the Glasgow Coma Scale score. The CatBoost model accurately predicted the occurrence of HAIs and could be used in clinical practice.

Keywords

References

  1. Eur J Intern Med. 2024 Mar;121:76-87 [PMID: 37981529]
  2. Int J Med Microbiol. 2024 Mar;314:151594 [PMID: 38154413]
  3. Med Biol Eng Comput. 2023 Dec;61(12):3397-3408 [PMID: 37679578]
  4. Ger Med Sci. 2023 Jun 23;21:Doc10 [PMID: 37426886]
  5. Healthcare (Basel). 2024 Feb 27;12(5): [PMID: 38470660]
  6. Physiol Meas. 2023 Jan 30;44(1): [PMID: 36599174]
  7. Healthc Inform Res. 2020 Oct;26(4):284-294 [PMID: 33190462]
  8. J Hosp Infect. 2021 Jun;112:77-86 [PMID: 33676936]
  9. Int J Clin Oncol. 2020 Jul;25(7):1242-1249 [PMID: 32212014]
  10. Support Care Cancer. 2022 Mar;30(3):2121-2129 [PMID: 34677650]
  11. Curr Opin Crit Care. 2024 Jun 1;30(3):246-250 [PMID: 38525882]
  12. Am J Med. 1991 Sep 16;91(3B):65S-71S [PMID: 1928194]
  13. Turk J Surg. 2019 Jun 13;35(2):124-130 [PMID: 32550317]
  14. Ann Ig. 2019 Sep-Oct;31(5):399-413 [PMID: 31304521]
  15. BMC Public Health. 2024 May 1;24(1):1206 [PMID: 38693495]
  16. JMIR Med Inform. 2022 Mar 3;10(3):e28781 [PMID: 35238790]
  17. J Clin Med. 2021 Mar 02;10(5): [PMID: 33801207]
  18. Hernia. 2024 Feb;28(1):33-42 [PMID: 37776406]
  19. Infect Dis (Lond). 2024 Apr;56(4):320-329 [PMID: 38317598]
  20. Health Inf Sci Syst. 2024 Mar 6;12(1):18 [PMID: 38464462]
  21. J Hosp Infect. 2024 Apr;146:224-231 [PMID: 37094715]
  22. J Hosp Infect. 2024 Apr;146:232-241 [PMID: 38029857]
  23. Front Med (Lausanne). 2023 Dec 18;10:1213411 [PMID: 38179280]
  24. BMC Med Educ. 2024 Jan 19;24(1):74 [PMID: 38243257]
  25. J Hosp Infect. 2024 Apr;146:10-20 [PMID: 38219834]
  26. Ren Fail. 2024 Dec;46(1):2316267 [PMID: 38369749]
  27. Antibiotics (Basel). 2023 Dec 19;13(1): [PMID: 38275312]
  28. Am J Infect Control. 2016 Dec 1;44(12):1589-1594 [PMID: 27692786]
  29. Antibiotics (Basel). 2024 Jan 13;13(1): [PMID: 38247635]
  30. Medicine (Baltimore). 2023 Aug 4;102(31):e34469 [PMID: 37543835]
  31. Crit Care. 2022 Mar 22;26(1):79 [PMID: 35337363]
  32. Diagnostics (Basel). 2024 Feb 23;14(5): [PMID: 38472956]
  33. Artif Intell Med. 2023 Dec;146:102715 [PMID: 38042602]
  34. Infect Drug Resist. 2023 Jan 26;16:569-579 [PMID: 36726386]
  35. Rev Assoc Med Bras (1992). 2022 Jul;68(7):904-911 [PMID: 35946766]
  36. J Am Coll Surg. 2021 Jun;232(6):963-971.e1 [PMID: 33831539]

MeSH Term

Humans
Intensive Care Units
Female
Retrospective Studies
Male
Cross Infection
Middle Aged
China
Risk Factors
Machine Learning
Aged
Adult
Risk Assessment
Tertiary Care Centers

Word Cloud

Created with Highcharts 10.0.0modelriskinfectionsHAIsscoreusedmachinelearninghealthcare-associatedpatientsintensivecarefactorscount10admittedunitstotal18predictionCatBoost0ScalehighwhitebloodcellRiskretrospectivestudyalgorithmspredictICUs2517treatedICUtertiaryhospitalChinaJanuary2019December2023included4551%developedHAIData32potentialinfectionconsideredstatisticallysignificantsingle-factoranalysisdevelopusingsyntheticminorityoversamplingtechniqueSMOTEmainrespiratorytract287%ventilator-associatedpneumonia250%predominantlycausedgram-negativebacteria788%showedgoodpredictiveperformanceareacurve:944sensitivity872importantpredictorsPenetrationAspirationBradenbilirubinlevelfemaleCapriniScoreNutritionalScreening2002loweosinophilmediumGlasgowComaaccuratelypredictedoccurrenceclinicalpracticeDevelopmentevaluationpredicting

Similar Articles

Cited By

No available data.