mTOR activity paces human blastocyst stage developmental progression.

Dhanur P Iyer, Heidar Heidari Khoei, Vera A van der Weijden, Harunobu Kagawa, Saurabh J Pradhan, Maria Novatchkova, Afshan McCarthy, Teresa Rayon, Claire S Simon, Ilona Dunkel, Sissy E Wamaitha, Kay Elder, Phil Snell, Leila Christie, Edda G Schulz, Kathy K Niakan, Nicolas Rivron, Aydan Bulut-Karslioğlu
Author Information
  1. Dhanur P Iyer: Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
  2. Heidar Heidari Khoei: Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
  3. Vera A van der Weijden: Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
  4. Harunobu Kagawa: Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
  5. Saurabh J Pradhan: Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
  6. Maria Novatchkova: Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
  7. Afshan McCarthy: The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK.
  8. Teresa Rayon: Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
  9. Claire S Simon: The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK.
  10. Ilona Dunkel: Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
  11. Sissy E Wamaitha: The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK.
  12. Kay Elder: Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK.
  13. Phil Snell: Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK.
  14. Leila Christie: Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK.
  15. Edda G Schulz: Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
  16. Kathy K Niakan: The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
  17. Nicolas Rivron: Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria. Electronic address: nicolas.rivron@imba.oeaw.ac.at.
  18. Aydan Bulut-Karslioğlu: Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. Electronic address: aydan.karslioglu@molgen.mpg.de.

Abstract

Many mammals can temporally uncouple conception from parturition by pacing down their development around the blastocyst stage. In mice, this dormant state is achieved by decreasing the activity of the growth-regulating mTOR signaling pathway. It is unknown whether this ability is conserved in mammals in general and in humans in particular. Here, we show that decreasing the activity of the mTOR signaling pathway induces human pluripotent stem cells (hPSCs) and blastoids to enter a dormant state with limited proliferation, developmental progression, and capacity to attach to endometrial cells. These in vitro assays show that, similar to other species, the ability to enter dormancy is active in human cells around the blastocyst stage and is reversible at both functional and molecular levels. The pacing of human blastocyst development has potential implications for reproductive therapies.

Keywords

References

  1. Elife. 2022 Jul 21;11: [PMID: 35861728]
  2. Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9 [PMID: 24623855]
  3. J Exp Zool. 1968 May;168(1):49-59 [PMID: 5700166]
  4. Nat Protoc. 2023 May;18(5):1584-1620 [PMID: 36792779]
  5. Nature. 2014 May 1;509(7498):49-54 [PMID: 24670665]
  6. PLoS Biol. 2012;10(10):e1001403 [PMID: 23055828]
  7. Science. 1997 Aug 15;277(5328):942-6 [PMID: 9252323]
  8. Genome Res. 2024 May 15;34(4):572-589 [PMID: 38719471]
  9. Nat Cell Biol. 2019 Feb;21(2):275-286 [PMID: 30598530]
  10. Nat Struct Mol Biol. 2013 Sep;20(9):1131-9 [PMID: 23934149]
  11. Nat Methods. 2017 Nov;14(11):1055-1062 [PMID: 28945704]
  12. Hum Reprod. 1998 Nov;13(11):3144-50 [PMID: 9853872]
  13. Nature. 2013 Dec 12;504(7479):282-6 [PMID: 24172903]
  14. Endocrinology. 2011 May;152(5):2067-75 [PMID: 21363932]
  15. Development. 2024 Apr 1;151(7): [PMID: 38603796]
  16. Nature. 2020 Nov;587(7834):443-447 [PMID: 32968278]
  17. Nat Cell Biol. 2024 Feb;26(2):181-193 [PMID: 38177284]
  18. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  19. Fertil Steril. 1996 Mar;65(3):503-9 [PMID: 8774277]
  20. Nat Struct Mol Biol. 2024 Oct;31(10):1625-1639 [PMID: 38783076]
  21. Theriogenology. 2020 Dec;158:105-111 [PMID: 32947063]
  22. Biol Reprod. 2017 Apr 1;96(4):877-894 [PMID: 28379301]
  23. Cell Stem Cell. 2021 Sep 2;28(9):1549-1565.e12 [PMID: 33915080]
  24. Development. 2023 Jun 1;150(11): [PMID: 37260362]
  25. Development. 2001 Jun;128(12):2333-9 [PMID: 11493552]
  26. Biol Reprod. 2014 Mar 13;90(3):52 [PMID: 24451987]
  27. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  28. Fertil Steril. 2009 Jun;91(6):2664-75 [PMID: 18439583]
  29. J Vis Exp. 2022 Aug 10;(186): [PMID: 36036618]
  30. Dev Cell. 2015 Nov 9;35(3):366-82 [PMID: 26555056]
  31. Biol Reprod. 2019 May 1;100(5):1204-1214 [PMID: 30715198]
  32. Elife. 2021 Sep 27;10: [PMID: 34569938]
  33. Cell Stem Cell. 2013 Dec 5;13(6):663-75 [PMID: 24315441]
  34. Stem Cell Reports. 2016 Apr 12;6(4):437-446 [PMID: 26947977]
  35. Nat Methods. 2014 Mar;11(3):319-24 [PMID: 24487582]
  36. ACS Cent Sci. 2016 Feb 24;2(2):65-74 [PMID: 27163030]
  37. Cell Stem Cell. 2021 Sep 2;28(9):1625-1640.e6 [PMID: 34004179]
  38. Proc Natl Acad Sci U S A. 2021 Aug 31;118(35): [PMID: 34452997]
  39. Cell Stem Cell. 2021 Jun 3;28(6):1016-1022.e4 [PMID: 33957081]
  40. Mol Cell Proteomics. 2015 May;14(5):1400-10 [PMID: 25724911]
  41. Cell. 2016 May 5;165(4):1012-26 [PMID: 27062923]
  42. Nat Rev Mol Cell Biol. 2020 Apr;21(4):183-203 [PMID: 31937935]
  43. Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
  44. Hum Reprod Update. 2011 Nov-Dec;17(6):772-90 [PMID: 21788281]
  45. Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16621-16630 [PMID: 31346081]
  46. Cell Stem Cell. 2016 Oct 6;19(4):502-515 [PMID: 27424783]
  47. Development. 2012 Mar;139(5):871-82 [PMID: 22278923]
  48. BMC Cell Biol. 2003 Sep 19;4:14 [PMID: 14499003]
  49. Nat Commun. 2020 Feb 7;11(1):764 [PMID: 32034154]
  50. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  51. Development. 2017 Sep 15;144(18):3199-3210 [PMID: 28928280]
  52. J Endocrinol. 1968 Nov;42(3):453-63 [PMID: 4179775]
  53. Reprod Biol Endocrinol. 2013 Sep 17;11:92 [PMID: 24044744]
  54. Nature. 2021 Dec;600(7888):285-289 [PMID: 34789876]
  55. Nat Methods. 2024 Nov 14;: [PMID: 39543283]
  56. Cell. 2014 Sep 11;158(6):1254-1269 [PMID: 25215486]
  57. J Exp Biol. 2017 Aug 1;220(Pt 15):2777-2786 [PMID: 28515235]
  58. Mol Cell Proteomics. 2018 Dec;17(12):2534-2545 [PMID: 30385480]
  59. Nat Commun. 2020 Oct 30;11(1):5499 [PMID: 33127892]
  60. Nature. 2022 Jan;601(7894):600-605 [PMID: 34856602]
  61. Cell Stem Cell. 2022 Jul 7;29(7):1102-1118.e8 [PMID: 35803228]
  62. Science. 2019 Nov 15;366(6467): [PMID: 31672918]
  63. Int J Dev Biol. 2014;58(2-4):175-81 [PMID: 25023683]
  64. Cell Rep. 2016 Mar 15;14(10):2301-12 [PMID: 26947063]
  65. Nature. 2019 Aug;572(7771):660-664 [PMID: 31435013]
  66. Cells. 2019 Sep 25;8(10): [PMID: 31557978]
  67. PLoS One. 2012;7(3):e33027 [PMID: 22427933]
  68. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  69. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  70. Front Cell Dev Biol. 2021 Jul 27;9:708318 [PMID: 34386497]
  71. Nat Protoc. 2018 Mar;13(3):530-550 [PMID: 29446774]
  72. Biol Reprod. 1981 Oct;25(3):487-91 [PMID: 7306638]
  73. Nat Biotechnol. 2024 Feb;42(2):293-304 [PMID: 37231261]
  74. Proteomics. 2005 Aug;5(13):3537-45 [PMID: 16041671]
  75. Stem Cell Reports. 2021 Jun 8;16(6):1416-1424 [PMID: 34048690]
  76. F1000Res. 2016 Aug 31;5:2122 [PMID: 27909575]
  77. Nature. 2023 Oct;622(7983):562-573 [PMID: 37673118]
  78. Nature. 2016 Dec 1;540(7631):119-123 [PMID: 27880763]
  79. Nat Commun. 2022 Jul 8;13(1):3944 [PMID: 35803928]
  80. Nature. 2020 Jan;577(7791):537-542 [PMID: 31830756]
  81. Cell Stem Cell. 2014 Oct 2;15(4):471-487 [PMID: 25090446]
  82. Stem Cell Reports. 2021 May 11;16(5):1078-1092 [PMID: 33979595]
  83. Mol Cytogenet. 2014 Oct 25;7(1):68 [PMID: 25356087]
  84. Cell. 2013 Sep 26;155(1):135-47 [PMID: 24074866]
  85. Nat Rev Mol Cell Biol. 2021 Oct;22(10):671-690 [PMID: 34272502]
  86. Cell. 2016 Feb 11;164(4):668-80 [PMID: 26871632]
  87. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  88. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10159-62 [PMID: 8234270]
  89. Sci Adv. 2020 May 13;6(20):eaaz0298 [PMID: 32426495]
  90. Proc Natl Acad Sci U S A. 2021 Mar 9;118(10): [PMID: 33649221]
  91. Nat Cell Biol. 2023 Sep;25(9):1279-1289 [PMID: 37696947]
  92. Nat Cancer. 2021 Nov;2(11):1152-1169 [PMID: 35122061]
  93. Nat Commun. 2018 Jan 24;9(1):360 [PMID: 29367672]
  94. Cell Stem Cell. 2018 Jan 4;22(1):50-63.e6 [PMID: 29249463]
  95. Sci Adv. 2020 Sep 9;6(37): [PMID: 32917695]
  96. Genome Biol. 2006;7(10):R100 [PMID: 17076895]
  97. Cell. 2014 Oct 9;159(2):242-51 [PMID: 25303523]
  98. Hum Reprod. 1996 Mar;11(3):651-4 [PMID: 8671285]
  99. Dev Biol. 2012 Jan 15;361(2):358-63 [PMID: 22079695]
  100. Reproduction. 2006 May;131(5):823-35 [PMID: 16672348]

Grants

  1. /Wellcome Trust
  2. FC001120/Arthritis Research UK
  3. M 3131/Austrian Science Fund FWF

MeSH Term

Humans
TOR Serine-Threonine Kinases
Blastocyst
Female
Signal Transduction
Pluripotent Stem Cells
Embryonic Development
Animals
Mice
Endometrium
Cell Proliferation

Chemicals

TOR Serine-Threonine Kinases
MTOR protein, human

Word Cloud

Created with Highcharts 10.0.0humanblastocystmTORcellsdevelopmentstageactivitymammalspacingarounddormantstatedecreasingsignalingpathwayabilityshowpluripotentstementerdevelopmentalprogressiondormancyManycantemporallyuncoupleconceptionparturitionmiceachievedgrowth-regulatingunknownwhetherconservedgeneralhumansparticularinduceshPSCsblastoidslimitedproliferationcapacityattachendometrialin vitroassayssimilarspeciesactivereversiblefunctionalmolecularlevelspotentialimplicationsreproductivetherapiespacesblastoiddiapause

Similar Articles

Cited By