Subtracting the background by reducing cell-free DNA's confounding effects on Mycobacterium tuberculosis quantitation and the sputum microbiome.

Charissa C Naidoo, Rouxjeane Venter, Francesc Codony, Gemma Agustí, Natasha Kitchin, Selisha Naidoo, Hilary Monaco, Hridesh Mishra, Yonghua Li, Jose C Clemente, Robin M Warren, Leopoldo N Segal, Grant Theron
Author Information
  1. Charissa C Naidoo: DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
  2. Rouxjeane Venter: DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
  3. Francesc Codony: Municipal Laboratory - Aigües de Mataró, Mataró, Spain.
  4. Gemma Agustí: Reactivos para Diagnóstico, Setmenat, Spain.
  5. Natasha Kitchin: Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
  6. Selisha Naidoo: Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
  7. Hilary Monaco: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  8. Hridesh Mishra: DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
  9. Yonghua Li: Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, USA.
  10. Jose C Clemente: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  11. Robin M Warren: DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
  12. Leopoldo N Segal: Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, USA.
  13. Grant Theron: DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa. gtheron@sun.ac.za.

Abstract

DNA characterisation in people with tuberculosis (TB) is critical for diagnostic and microbiome evaluations. However, extracellular DNA, more frequent in people on chemotherapy, confounds results. We evaluated whether nucleic acid dyes [propidium monoazide (PMA), PEMAX] and DNaseI could reduce this. PCR [16S Mycobacterium tuberculosis complex (Mtb) qPCR, Xpert MTB/RIF] was done on dilution series of untreated and treated (PMA, PEMAX, DNaseI) Mtb. Separately, 16S rRNA gene qPCR and sequencing were done on untreated and treated sputa before (Cohort A: 11 TB-negatives, 9 TB-positives; Cohort B: 19 TB-positives, PEMAX only) and 24-weeks after chemotherapy (Cohort B). PMA and PEMAX reduced PCR-detected Mtb DNA for dilution series and Cohort A sputum versus untreated controls, suggesting non-intact Mtb is present before treatment-start. PEMAX enabled sequencing-based Mycobacterium-detection in 7/12 (58%) TB-positive sputa where no such reads otherwise occurred. In Cohort A, PMA- and PEMAX-treated versus untreated sputa had decreased α- and increased β-diversities. In Cohort B, β-diversity differences between timepoints were only detected with PEMAX. DNaseI had negligible effects. PMA and PEMAX (but not DNaseI) reduced extracellular DNA in PCR and improved pathogen detection by sequencing. PEMAX additionally detected chemotherapy-associated taxonomic changes that would otherwise be missed. Dyes enhance microbiome evaluations especially during chemotherapy.

Keywords

References

  1. Sci Rep. 2021 Dec 29;11(1):24486 [PMID: 34966183]
  2. J Microbiol Methods. 2008 Feb;72(2):180-4 [PMID: 18160156]
  3. J Clin Lab Anal. 2019 Mar;33(3):e22716 [PMID: 30461054]
  4. Eur Respir J. 2018 Oct 25;52(4): [PMID: 30093571]
  5. Microbiome. 2017 Jul 7;5(1):71 [PMID: 28683818]
  6. Am J Respir Crit Care Med. 2022 May 15;205(10):1214-1227 [PMID: 35175905]
  7. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  8. Clin Infect Dis. 2016 Apr 15;62(8):995-1001 [PMID: 26908793]
  9. Eur Respir J. 2018 Nov 8;52(5): [PMID: 30361242]
  10. Eur Respir J. 2012 May;39(5):1269-71 [PMID: 22547737]
  11. Nat Rev Genet. 2023 Feb;24(2):109-124 [PMID: 36198908]
  12. J Clin Microbiol. 2018 Feb 22;56(3): [PMID: 29305538]
  13. J Microbiol Methods. 2021 Jun;185:106223 [PMID: 33872638]
  14. Front Microbiol. 2021 Aug 20;12:633396 [PMID: 34489876]
  15. J Microbiol Methods. 2006 Nov;67(2):310-20 [PMID: 16753236]
  16. J Microbiol Methods. 2007 Aug;70(2):252-60 [PMID: 17544161]
  17. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  18. Nature. 2008 Nov 27;456(7221):507-10 [PMID: 18987631]
  19. ISME J. 2012 Aug;6(8):1621-4 [PMID: 22402401]
  20. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  21. Tuberculosis (Edinb). 2016 Dec;101:79-84 [PMID: 27865403]
  22. Ann Lab Med. 2014 May;34(3):203-9 [PMID: 24790907]
  23. Lancet Microbe. 2023 Nov;4(11):e913-e922 [PMID: 37832571]
  24. Tuberculosis (Edinb). 2015 Mar;95(2):179-85 [PMID: 25534168]
  25. Appl Environ Microbiol. 2013 Oct;79(19):5936-41 [PMID: 23872563]
  26. Appl Environ Microbiol. 2007 Aug;73(16):5111-7 [PMID: 17586667]
  27. Food Microbiol. 2020 Apr;86:103310 [PMID: 31703859]
  28. Nat Microbiol. 2018 Aug;3(8):851-853 [PMID: 30046175]
  29. Mol Cell Probes. 2015 Jun;29(3):190-2 [PMID: 25797787]
  30. ISME J. 2012 Mar;6(3):610-8 [PMID: 22134646]
  31. Helicobacter. 2010 Oct;15(5):473-6 [PMID: 21083754]
  32. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  33. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  34. Nat Microbiol. 2016 Apr 04;1:16031 [PMID: 27572644]
  35. Appl Environ Microbiol. 2008 Apr;74(8):2537-9 [PMID: 18296534]
  36. J Appl Microbiol. 2014 Jan;116(1):1-13 [PMID: 24119073]
  37. Antimicrob Agents Chemother. 2019 Sep 23;63(10): [PMID: 31307985]
  38. Am J Respir Crit Care Med. 2018 Nov 1;198(9):1188-1198 [PMID: 29864375]
  39. Tuberculosis (Edinb). 2014 Jul;94(4):421-7 [PMID: 24863654]
  40. Sci Rep. 2017 Sep 7;7(1):10767 [PMID: 28883399]
  41. J Cyst Fibros. 2015 Jul;14(4):464-7 [PMID: 25459563]
  42. Oncotarget. 2016 Sep 6;7(36):57581-57592 [PMID: 27557501]
  43. Clin Microbiol Infect. 2010 Nov;16(11):1656-8 [PMID: 20148918]
  44. EBioMedicine. 2021 May;67:103374 [PMID: 33975252]
  45. Appl Environ Microbiol. 2009 May;75(9):2936-9 [PMID: 19270144]
  46. Cell Host Microbe. 2017 Apr 12;21(4):530-537.e4 [PMID: 28366509]
  47. Lancet Respir Med. 2020 Apr;8(4):368-382 [PMID: 32066534]
  48. Infect Dis Ther. 2023 Nov;12(11):2535-2544 [PMID: 37815754]
  49. Nat Commun. 2021 Feb 18;12(1):1141 [PMID: 33602926]
  50. Curr Microbiol. 2017 Mar;74(3):377-380 [PMID: 28175959]

Grants

  1. K43TW012302/NIH HHS
  2. R01AI136894/NIH HHS
  3. 98948/National Research Foundation
  4. SF1041/European and Developing Countries Clinical Trials Partnership

MeSH Term

Humans
Mycobacterium tuberculosis
Sputum
Microbiota
Cell-Free Nucleic Acids
RNA, Ribosomal, 16S
DNA, Bacterial
Tuberculosis
Female
Male
Adult
Middle Aged
Azides
Tuberculosis, Pulmonary
Propidium

Chemicals

Cell-Free Nucleic Acids
RNA, Ribosomal, 16S
DNA, Bacterial
propidium monoazide
Azides
Propidium

Word Cloud

Created with Highcharts 10.0.0PEMAXCohortDNaseIDNAtuberculosismicrobiomePMAMtbuntreatedchemotherapyMycobacteriumsputapeopleevaluationsextracellularmonoazidePCRqPCRXpertdonedilutionseriestreatedsequencingBreducedsputumversusotherwisedetectedeffectscharacterisationTBcriticaldiagnosticHoweverfrequentconfoundsresultsevaluatedwhethernucleicaciddyes[propidiumPEMAX]reduce[16ScomplexMTB/RIF]Separately16SrRNAgeneA:11 TB-negatives9 TB-positivesB:19 TB-positives24-weeksPCR-detectedcontrolssuggestingnon-intactpresenttreatment-startenabledsequencing-basedMycobacterium-detection7/1258%TB-positivereadsoccurredPMA-PEMAX-treateddecreasedα-increasedβ-diversitiesβ-diversitydifferencestimepointsnegligibleimprovedpathogendetectionadditionallychemotherapy-associatedtaxonomicchangesmissedDyesenhanceespeciallySubtractingbackgroundreducingcell-freeDNA'sconfoundingquantitationPropidiumSputumMTB/RIF

Similar Articles

Cited By

No available data.