Enhancing stroke rehabilitation with whole-hand haptic rendering: development and clinical usability evaluation of a novel upper-limb rehabilitation device.

Raphael Rätz, François Conti, Irène Thaler, René M Müri, Laura Marchal-Crespo
Author Information
  1. Raphael Rätz: Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland. raphael.raetz@unibe.ch.
  2. François Conti: Force Dimension, Nyon, Switzerland.
  3. Irène Thaler: Department of Neurology, University Neurorehabilitation, University Hospital Bern (Inselspital), University of Bern, Bern, Switzerland.
  4. René M Müri: Department of Neurology, University Neurorehabilitation, University Hospital Bern (Inselspital), University of Bern, Bern, Switzerland.
  5. Laura Marchal-Crespo: Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.

Abstract

INTRODUCTION: There is currently a lack of easy-to-use and effective robotic devices for upper-limb rehabilitation after stroke. Importantly, most current systems lack the provision of somatosensory information that is congruent with the virtual training task. This paper introduces a novel haptic robotic system designed for upper-limb rehabilitation, focusing on enhancing sensorimotor rehabilitation through comprehensive haptic rendering.
METHODS: We developed a novel haptic rehabilitation device with a unique combination of degrees of freedom that allows the virtual training of functional reach and grasp tasks, where we use a physics engine-based haptic rendering method to render whole-hand interactions between the patients' hands and virtual tangible objects. To evaluate the feasibility of our system, we performed a clinical mixed-method usability study with seven patients and seven therapists working in neurorehabilitation. We employed standardized questionnaires to gather quantitative data and performed semi-structured interviews with all participants to gain qualitative insights into the perceived usability and usefulness of our technological solution.
RESULTS: The device demonstrated ease of use and adaptability to various hand sizes without extensive setup. Therapists and patients reported high satisfaction levels, with the system facilitating engaging and meaningful rehabilitation exercises. Participants provided notably positive feedback, particularly emphasizing the system's available degrees of freedom and its haptic rendering capabilities. Therapists expressed confidence in the transferability of sensorimotor skills learned with our system to activities of daily living, although further investigation is needed to confirm this.
CONCLUSION: The novel haptic robotic system effectively supports upper-limb rehabilitation post-stroke, offering high-fidelity haptic feedback and engaging training tasks. Its clinical usability, combined with positive feedback from both therapists and patients, underscores its potential to enhance robotic neurorehabilitation.

Keywords

References

  1. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3602-3605 [PMID: 30441156]
  2. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2644-2647 [PMID: 36085966]
  3. J Rehabil Med. 2014 Nov;46(10):963-8 [PMID: 25188837]
  4. J Neuroeng Rehabil. 2012 Aug 02;9:52 [PMID: 22856548]
  5. J Neuroeng Rehabil. 2022 Feb 4;19(1):14 [PMID: 35120546]
  6. Dtsch Arztebl Int. 2008 Jun;105(26):467-73 [PMID: 19626195]
  7. J Neuroeng Rehabil. 2021 Apr 20;18(1):65 [PMID: 33879182]
  8. Front Neurosci. 2021 Jul 02;15:678909 [PMID: 34295219]
  9. Front Neurol. 2021 Jan 20;11:616097 [PMID: 33551975]
  10. Stroke. 2002 Jul;33(7):1840-4 [PMID: 12105363]
  11. Med Eng Phys. 1995 Jun;17(4):297-303 [PMID: 7633758]
  12. Pract Neurol. 2022 Feb;22(1):85-89 [PMID: 34135093]
  13. Disabil Rehabil Assist Technol. 2011;6(5):420-31 [PMID: 21184626]
  14. J Neuroeng Rehabil. 2006 Aug 31;3:20 [PMID: 16945148]
  15. Front Neurosci. 2021 Feb 02;14:600059 [PMID: 33603642]
  16. IEEE Int Conf Rehabil Robot. 2022 Jul;2022:1-6 [PMID: 36176098]
  17. Psychon Bull Rev. 2013 Feb;20(1):21-53 [PMID: 23132605]
  18. Stroke. 2003 Sep;34(9):2181-6 [PMID: 12907818]
  19. J Neuroeng Rehabil. 2019 Jun 3;16(1):64 [PMID: 31159822]
  20. IEEE Trans Haptics. 2023 Apr-Jun;16(2):296-310 [PMID: 37167042]
  21. Exp Brain Res. 2007 Sep;182(1):27-34 [PMID: 17516058]
  22. Exp Brain Res. 2010 Apr;201(4):863-73 [PMID: 19949777]
  23. Phys Med Rehabil Clin N Am. 2015 Nov;26(4):691-702 [PMID: 26522906]
  24. J Neuroeng Rehabil. 2016 Jan 23;13:9 [PMID: 26801620]
  25. Crit Rev Biomed Eng. 2016;44(1-2):1-32 [PMID: 27652449]
  26. J Neuroeng Rehabil. 2020 Aug 24;17(1):115 [PMID: 32831097]
  27. Int Rehabil Med. 1986;8(2):69-73 [PMID: 3804600]
  28. J Neuroeng Rehabil. 2022 Feb 13;19(1):19 [PMID: 35152897]
  29. Arch Phys Med Rehabil. 2021 Jan;102(1):9-18 [PMID: 32861668]
  30. Int J Rehabil Res. 2017 Mar;40(1):19-28 [PMID: 27926617]
  31. IEEE Trans Biomed Eng. 2008 Jul;55(7):1897-906 [PMID: 18595809]
  32. J Neurosci Methods. 2009 Jul 30;181(2):199-211 [PMID: 19450621]
  33. Sensors (Basel). 2023 Feb 03;23(3): [PMID: 36772758]
  34. Cochrane Database Syst Rev. 2016 Nov 14;11:CD006073 [PMID: 27841442]
  35. J Neuroeng Rehabil. 2022 Dec 9;19(1):137 [PMID: 36494668]
  36. Exp Brain Res. 2013 Nov;231(3):277-91 [PMID: 24013789]
  37. IEEE Trans Haptics. 2021 Oct-Dec;14(4):722-739 [PMID: 34388095]
  38. Exp Brain Res. 2010 Mar;201(2):209-20 [PMID: 19820920]
  39. Am J Occup Ther. 2018 May/Jun;72(3):7203205100p1-7203205100p10 [PMID: 29689179]
  40. J Neurophysiol. 2021 Jan 1;125(1):43-62 [PMID: 33146063]
  41. Int J Stroke. 2022 Jan;17(1):18-29 [PMID: 34986727]
  42. J Neuroeng Rehabil. 2018 Jun 5;15(1):46 [PMID: 29866106]
  43. Front Neurorobot. 2021 Dec 20;15:748196 [PMID: 34987371]
  44. Front Neurorobot. 2024 Apr 04;18:1351700 [PMID: 38638360]
  45. Eur J Neurosci. 2021 Feb;53(4):947-963 [PMID: 33084102]
  46. Disabil Rehabil Assist Technol. 2016 Nov;11(8):653-60 [PMID: 25879304]
  47. N Engl J Med. 2010 May 13;362(19):1772-83 [PMID: 20400552]
  48. Lancet. 2019 Jul 6;394(10192):51-62 [PMID: 31128926]
  49. J Neuroeng Rehabil. 2023 Dec 1;20(1):162 [PMID: 38041135]
  50. Restor Neurol Neurosci. 2016 Apr 11;34(4):571-86 [PMID: 27080070]
  51. IEEE Int Conf Rehabil Robot. 2017 Jul;2017:720-725 [PMID: 28813905]
  52. Clin Rehabil. 2015 Jul;29(7):674-82 [PMID: 25322868]
  53. J Mot Behav. 1997 Sep;29(3):282-7 [PMID: 12453786]
  54. Ergonomics. 1992 Mar;35(3):261-73 [PMID: 1572336]
  55. Cochrane Database Syst Rev. 2015 Nov 07;(11):CD006876 [PMID: 26559225]
  56. Am J Phys Med Rehabil. 2012 Sep;91(9):814-20 [PMID: 22760104]
  57. J Neurosci. 1985 Jul;5(7):1688-703 [PMID: 4020415]
  58. Res Q Exerc Sport. 1989 Mar;60(1):48-58 [PMID: 2489825]
  59. Front Neurosci. 2021 Apr 07;15:646698 [PMID: 33897359]
  60. IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):593-602 [PMID: 23744701]
  61. Front Bioeng Biotechnol. 2021 Apr 15;9:652380 [PMID: 33937218]
  62. Brain. 2001 Jan;124(Pt 1):132-44 [PMID: 11133793]
  63. J Neurophysiol. 2012 Jan;107(1):433-41 [PMID: 22013237]
  64. Arch Phys Med Rehabil. 2002 Aug;83(8):1035-42 [PMID: 12161823]
  65. J Neuroeng Rehabil. 2014 Dec 12;11:163 [PMID: 25495889]
  66. Int J Stroke. 2017 Jul;12(5):444-450 [PMID: 28697708]
  67. Psychon Bull Rev. 2016 Oct;23(5):1382-1414 [PMID: 26833314]
  68. IEEE Trans Rehabil Eng. 1998 Mar;6(1):75-87 [PMID: 9535526]
  69. IEEE Int Conf Rehabil Robot. 2019 Jun;2019:1085-1090 [PMID: 31374774]
  70. J Neuroeng Rehabil. 2014 Feb 04;11:10 [PMID: 24495432]
  71. Lancet Neurol. 2014 Feb;13(2):159-66 [PMID: 24382580]
  72. Front Bioeng Biotechnol. 2021 Jan 28;8:620805 [PMID: 33585418]
  73. IEEE Int Conf Rehabil Robot. 2017 Jul;2017:511-515 [PMID: 28813871]
  74. Brain. 2003 Apr;126(Pt 4):866-72 [PMID: 12615644]
  75. J Neurol Neurosurg Psychiatry. 1983 Jun;46(6):521-4 [PMID: 6875585]
  76. Front Neurorobot. 2021 Feb 17;15:617636 [PMID: 33679364]
  77. J Neuroeng Rehabil. 2020 Feb 5;17(1):13 [PMID: 32024528]
  78. IEEE Trans Haptics. 2024 Sep 03;PP: [PMID: 39226192]
  79. Front Robot AI. 2019 Nov 08;6:102 [PMID: 33501117]
  80. Nat Rev Neurosci. 2004 Jul;5(7):532-46 [PMID: 15208695]
  81. Atten Percept Psychophys. 2017 Nov;79(8):2478-2498 [PMID: 28744702]
  82. Sci Rep. 2018 Feb 1;8(1):2091 [PMID: 29391492]
  83. Q J Exp Psychol A. 1983 May;35(Pt 2):297-309 [PMID: 6571312]
  84. Arch Phys Med Rehabil. 2019 Feb;100(2):213-219 [PMID: 30686326]
  85. Sensors (Basel). 2020 Oct 22;20(21): [PMID: 33105845]
  86. Neurorehabil Neural Repair. 2020 May;34(5):403-416 [PMID: 32391744]
  87. Behav Res Methods Instrum Comput. 2003 Aug;35(3):379-83 [PMID: 14587545]
  88. BMC Health Serv Res. 2022 Apr 20;22(1):523 [PMID: 35443710]
  89. J Neuroeng Rehabil. 2019 Oct 18;16(1):121 [PMID: 31627755]
  90. Kaohsiung J Med Sci. 2023 May;39(5):435-445 [PMID: 36999894]
  91. Stroke. 2010 Sep;41(9):2016-20 [PMID: 20705930]
  92. J Rehabil Med. 2008 Aug;40(8):603-8 [PMID: 19020692]
  93. J Neuroeng Rehabil. 2007 Feb 19;4:3 [PMID: 17309790]
  94. Phys Ther. 2014 Sep;94(9):1220-31 [PMID: 24764072]
  95. J Neuroeng Rehabil. 2020 Oct 7;17(1):132 [PMID: 33028354]
  96. IEEE Trans Haptics. 2013 Jul-Sep;6(3):296-308 [PMID: 24808326]
  97. Clin Neurophysiol. 2019 May;130(5):767-780 [PMID: 30904771]
  98. J Neurophysiol. 1998 Dec;80(6):3321-5 [PMID: 9862925]
  99. J Orthop Res. 2003 Nov;21(6):1151-5 [PMID: 14554232]
  100. J Neuroeng Rehabil. 2021 Dec 9;18(1):170 [PMID: 34886902]
  101. Neurol Res Pract. 2020 Jun 16;2:17 [PMID: 33324923]

Grants

  1. 32213.1 IP-CT/Innosuisse - Schweizerische Agentur für Innovationsförderung
  2. VIDI TTW 2020/Nederlandse Organisatie voor Wetenschappelijk Onderzoek

MeSH Term

Humans
Stroke Rehabilitation
Male
Female
Upper Extremity
Middle Aged
Robotics
Aged
Hand
Adult
Equipment Design
User-Computer Interface

Word Cloud

Created with Highcharts 10.0.0rehabilitationhapticsystemroboticupper-limbnovelrenderingusabilityvirtualtrainingdeviceclinicalpatientsfeedbacklackstrokesensorimotordegreesfreedomtasksusewhole-handperformedseventherapistsneurorehabilitationTherapistsengagingpositiveINTRODUCTION:currentlyeasy-to-useeffectivedevicesImportantlycurrentsystemsprovisionsomatosensoryinformationcongruenttaskpaperintroducesdesignedfocusingenhancingcomprehensiveMETHODS:developeduniquecombinationallowsfunctionalreachgraspphysicsengine-basedmethodrenderinteractionspatients'handstangibleobjectsevaluatefeasibilitymixed-methodstudyworkingemployedstandardizedquestionnairesgatherquantitativedatasemi-structuredinterviewsparticipantsgainqualitativeinsightsperceivedusefulnesstechnologicalsolutionRESULTS:demonstratedeaseadaptabilityvarioushandsizeswithoutextensivesetupreportedhighsatisfactionlevelsfacilitatingmeaningfulexercisesParticipantsprovidednotablyparticularlyemphasizingsystem'savailablecapabilitiesexpressedconfidencetransferabilityskillslearnedactivitiesdailylivingalthoughinvestigationneededconfirmthisCONCLUSION:effectivelysupportspost-strokeofferinghigh-fidelitycombinedunderscorespotentialenhanceEnhancingrendering:developmentevaluationClinical-drivenGraspingHapticNeurorehabilitationRoboticSensorimotorSeriousgameStrokeUpper-limbUsability

Similar Articles

Cited By