3D Models Currently Proposed to Investigate Human Skin Aging and Explore Preventive and Reparative Approaches: A Descriptive Review.

Francesca Lombardi, Francesca Rosaria Augello, Alessia Ciafarone, Valeria Ciummo, Serena Altamura, Benedetta Cinque, Paola Palumbo
Author Information
  1. Francesca Lombardi: Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID
  2. Francesca Rosaria Augello: Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID
  3. Alessia Ciafarone: Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID
  4. Valeria Ciummo: Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy. ORCID
  5. Serena Altamura: Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID
  6. Benedetta Cinque: Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
  7. Paola Palumbo: Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID

Abstract

Skin aging is influenced by intrinsic and extrinsic factors that progressively impair skin functionality over time. Investigating the skin aging process requires thorough research using innovative technologies. This review explores the use of in vitro human 3D culture models, serving as valuable alternatives to animal ones, in skin aging research. The aim is to highlight the benefits and necessity of improving the methodology in analyzing the molecular mechanisms underlying human skin aging. Traditional 2D models, including monolayers of keratinocytes, fibroblasts, or melanocytes, even if providing cost-effective and straightforward methods to study critical processes such as extracellular matrix degradation, pigmentation, and the effects of secretome on skin cells, fail to replicate the complex tissue architecture with its intricated interactions. Advanced 3D models (organoid cultures, "skin-on-chip" technologies, reconstructed human skin, and 3D bioprinting) considerably enhance the physiological relevance, enabling a more accurate representation of skin aging and its peculiar features. By reporting the advantages and limitations of 3D models, this review highlights the importance of using advanced in vitro systems to develop practical anti-aging preventive and reparative approaches and improve human translational research in this field. Further exploration of these technologies will provide new opportunities for previously unexplored knowledge on skin aging.

Keywords

References

  1. Sci Rep. 2020 Jul 30;10(1):12815 [PMID: 32733073]
  2. Skin Res Technol. 2023 Jun;29(6):e13354 [PMID: 37357658]
  3. Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2301880120 [PMID: 37579160]
  4. PLoS One. 2013 Oct 11;8(10):e77673 [PMID: 24147053]
  5. Cancers (Basel). 2023 Mar 12;15(6): [PMID: 36980615]
  6. ACS Synth Biol. 2022 Jan 21;11(1):26-38 [PMID: 34967598]
  7. Microbiome. 2018 Jan 30;6(1):20 [PMID: 29378633]
  8. Trends Biotechnol. 2024 May;42(5):648-663 [PMID: 38071145]
  9. J Invest Dermatol. 2014 Apr;134(4):1131-1133 [PMID: 24335897]
  10. Ageing Res Rev. 2022 Nov;81:101732 [PMID: 36100069]
  11. Br J Dermatol. 2017 Jan;176(1):159-167 [PMID: 27363533]
  12. Biomolecules. 2022 Dec 27;13(1): [PMID: 36671440]
  13. Pharmaceutics. 2022 Mar 21;14(3): [PMID: 35336056]
  14. Biogerontology. 2013 Apr;14(2):131-40 [PMID: 23504375]
  15. Nature. 2009 May 14;459(7244):262-5 [PMID: 19329995]
  16. J Invest Dermatol. 2024 Aug;144(8):1707-1715 [PMID: 38493383]
  17. Microbiome. 2021 Jan 22;9(1):22 [PMID: 33482907]
  18. Int J Nanomedicine. 2023 Dec 28;18:8039-8057 [PMID: 38164264]
  19. J Invest Dermatol. 1983 Jul;81(1 Suppl):28s-33s [PMID: 6190962]
  20. Aging (Albany NY). 2022 Nov 22;14(22):9338-9383 [PMID: 36435511]
  21. Cell. 2006 Aug 25;126(4):663-76 [PMID: 16904174]
  22. Cell Death Dis. 2019 Mar 11;10(3):238 [PMID: 30858357]
  23. Antioxidants (Basel). 2021 Oct 22;10(11): [PMID: 34829534]
  24. Pigment Cell Melanoma Res. 2022 Jul;35(4):425-435 [PMID: 35325505]
  25. Mater Today Bio. 2023 Dec 22;24:100924 [PMID: 38226015]
  26. J Natl Cancer Inst. 2021 Oct 1;113(10):1285-1298 [PMID: 33792717]
  27. Nat Commun. 2024 Feb 28;15(1):1816 [PMID: 38418829]
  28. J Cell Biol. 2018 Jan 2;217(1):39-50 [PMID: 29263081]
  29. Cell. 2016 Jun 16;165(7):1586-1597 [PMID: 27315476]
  30. Curr Opin Cell Biol. 2012 Dec;24(6):744-56 [PMID: 23146768]
  31. Exp Dermatol. 2018 May;27(5):453-459 [PMID: 28453913]
  32. Photodermatol Photoimmunol Photomed. 2007 Apr-Jun;23(2-3):73-80 [PMID: 17523928]
  33. Plast Reconstr Surg. 1981 Mar;67(3):386-92 [PMID: 7232576]
  34. Microbiome. 2021 May 30;9(1):125 [PMID: 34053468]
  35. Nature. 2020 Jun;582(7812):399-404 [PMID: 32494013]
  36. Matrix Biol. 2015 Sep;47:85-97 [PMID: 25840344]
  37. Small. 2020 Oct;16(39):e2002515 [PMID: 33460277]
  38. Adv Healthc Mater. 2024 Jun;13(15):e2303312 [PMID: 38478847]
  39. Commun Biol. 2021 Feb 19;4(1):231 [PMID: 33608630]
  40. Environ Int. 2024 Mar;185:108535 [PMID: 38428192]
  41. Cells. 2024 Jan 30;13(3): [PMID: 38334650]
  42. Ageing Res Rev. 2020 May;59:101036 [PMID: 32105850]
  43. Animals (Basel). 2019 Sep 30;9(10): [PMID: 31575048]
  44. Burns Trauma. 2021 May 04;9:tkab013 [PMID: 34213515]
  45. Biomolecules. 2024 Jun 29;14(7): [PMID: 39062490]
  46. Cells. 2019 Dec 12;8(12): [PMID: 31842346]
  47. EMBO J. 2019 Dec 2;38(23):e101982 [PMID: 31633821]
  48. Mol Biomed. 2024 Feb 12;5(1):6 [PMID: 38342791]
  49. Clin Cosmet Investig Dermatol. 2022 May 19;15:911-927 [PMID: 35615726]
  50. Int J Mol Sci. 2021 Sep 29;22(19): [PMID: 34638891]
  51. Arch Toxicol. 2012 Nov;86(11):1641-6 [PMID: 23052193]
  52. Exp Dermatol. 2021 Apr;30(4):613-620 [PMID: 33507537]
  53. Microbiome. 2023 Oct 17;11(1):227 [PMID: 37849006]
  54. Cell. 1975 Nov;6(3):331-43 [PMID: 1052771]
  55. Cells. 2020 Aug 18;9(8): [PMID: 32824646]
  56. Int J Mol Sci. 2021 Nov 26;22(23): [PMID: 34884594]
  57. Adv Healthc Mater. 2022 Nov;11(22):e2201626 [PMID: 36063498]
  58. Biomedicines. 2023 Aug 28;11(9): [PMID: 37760851]
  59. Science. 1981 Mar 6;211(4486):1052-4 [PMID: 7008197]
  60. Lancet. 2009 Nov 21;374(9703):1745-53 [PMID: 19932355]
  61. Q J Microsc Sci. 1948 Jun;89(Pt 2):187-96 [PMID: 18873483]
  62. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8797-802 [PMID: 21555586]
  63. Molecules. 2022 Nov 21;27(22): [PMID: 36432202]
  64. Exp Dermatol. 2020 Nov;29(11):1133-1139 [PMID: 32748435]
  65. Int J Radiat Oncol Biol Phys. 2019 Sep 1;105(1):193-205 [PMID: 31085283]
  66. Biomedicines. 2023 Mar 06;11(3): [PMID: 36979772]
  67. J Invest Dermatol. 2021 Apr;141(4S):1063-1070 [PMID: 33558058]
  68. Front Bioeng Biotechnol. 2019 Dec 06;7:400 [PMID: 31867324]
  69. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1274-8 [PMID: 286310]
  70. Biomaterials. 2009 Mar;30(8):1587-95 [PMID: 19108884]
  71. Tissue Eng Part C Methods. 2015 May;21(5):499-508 [PMID: 25343343]
  72. NPJ Aging Mech Dis. 2018 Apr 11;4:4 [PMID: 29675264]
  73. In Vitro Cell Dev Biol Anim. 2021 Feb;57(2):95-103 [PMID: 33237402]
  74. Cell Biosci. 2022 Apr 1;12(1):39 [PMID: 35365227]
  75. Lab Chip. 2021 Apr 20;21(8):1527-1539 [PMID: 33616124]
  76. Lab Chip. 2015 Feb 7;15(3):882-8 [PMID: 25490891]
  77. APL Bioeng. 2021 Jul 08;5(3):030901 [PMID: 34258497]
  78. Nat Rev Cancer. 2018 Jul;18(7):407-418 [PMID: 29692415]
  79. Nat Rev Mol Cell Biol. 2020 Oct;21(10):571-584 [PMID: 32636524]
  80. Biomimetics (Basel). 2024 Jun 17;9(6): [PMID: 38921246]
  81. Biofabrication. 2016 Mar 01;8(1):014103 [PMID: 26930133]
  82. J Vis Exp. 2019 Apr 18;(146): [PMID: 31058887]
  83. Aging Cell. 2023 Jan;22(1):e13752 [PMID: 36547021]
  84. Biofabrication. 2018 Jan 23;10(2):025005 [PMID: 29360631]
  85. Molecules. 2023 Mar 17;28(6): [PMID: 36985709]
  86. J Tissue Eng. 2021 Jul 13;12:20417314211028574 [PMID: 34345398]
  87. Nat Biotechnol. 2017 Jan;35(1):69-74 [PMID: 27941802]
  88. Microphysiol Syst. 2018 Aug;2: [PMID: 33521629]
  89. J Biomed Mater Res. 2002 Jun 15;60(4):613-21 [PMID: 11948520]
  90. Int J Food Sci Nutr. 2017 Sep;68(6):712-718 [PMID: 28122479]
  91. J Cosmet Dermatol. 2019 Oct;18(5):1507-1515 [PMID: 30548159]
  92. Int J Mol Sci. 2024 Apr 04;25(7): [PMID: 38612828]
  93. Biomaterials. 2020 Jan;226:119536 [PMID: 31648135]
  94. Nat Rev Genet. 2018 Nov;19(11):671-687 [PMID: 30228295]
  95. Regen Biomater. 2023 Jun 13;10:rbad060 [PMID: 37501679]
  96. Altern Lab Anim. 1995 May-Jun;23(3):298-304 [PMID: 11656565]
  97. Front Aging. 2024 Jan 11;4:1304705 [PMID: 38362046]
  98. Int J Mol Sci. 2024 Jul 12;25(14): [PMID: 39062918]
  99. J Invest Dermatol. 2021 Jan;141(1):228-231.e4 [PMID: 32522484]
  100. Altern Lab Anim. 2002 Dec;30 Suppl 2:61-7 [PMID: 12572585]
  101. Cell Biol Int. 2007 Sep;31(9):985-90 [PMID: 17467308]
  102. Cells. 2023 Nov 30;12(23): [PMID: 38067173]
  103. Exp Dermatol. 2016 Jan;25(1):56-61 [PMID: 26440058]
  104. Biomaterials. 2017 Feb;116:48-56 [PMID: 27914266]
  105. Adv Wound Care (New Rochelle). 2022 Nov;11(11):622-638 [PMID: 34155919]
  106. Stem Cells. 2008 Feb;26(2):372-80 [PMID: 17962700]
  107. Mech Ageing Dev. 2020 Sep;190:111318 [PMID: 32710895]
  108. Biomater Sci. 2021 Jan 5;9(1):199-211 [PMID: 33174545]
  109. Int J Mol Sci. 2023 Nov 04;24(21): [PMID: 37958945]
  110. Aging (Albany NY). 2023 Nov 27;15(22):12702-12722 [PMID: 38015712]
  111. Pediatr Res. 2018 Jan;83(1-2):223-231 [PMID: 28985202]
  112. J Invest Dermatol. 1986 Feb;86(2):181-6 [PMID: 2427599]
  113. J Tissue Eng. 2024 May 8;15:20417314241248753 [PMID: 38725732]
  114. Int J Biol Macromol. 2024 May;268(Pt 2):131623 [PMID: 38642687]
  115. J Tissue Eng Regen Med. 2018 Jul;12(7):1658-1669 [PMID: 29763974]
  116. NPJ Aging Mech Dis. 2020 Mar 6;6:4 [PMID: 32194977]
  117. Nat Commun. 2019 May 28;10(1):2348 [PMID: 31138796]
  118. Front Cell Dev Biol. 2022 Nov 23;10:1030339 [PMID: 36506084]
  119. Int Immunol. 2003 Jun;15(6):721-30 [PMID: 12750356]
  120. Nat Rev Methods Primers. 2022;2: [PMID: 37325195]
  121. PLoS One. 2017 Jan 3;12(1):e0169028 [PMID: 28046026]
  122. J Photochem Photobiol B. 2016 Dec;165:34-41 [PMID: 27768951]
  123. Cells. 2023 Mar 18;12(6): [PMID: 36980271]
  124. Aging Cell. 2022 Feb;21(2):e13550 [PMID: 35037366]

Grants

  1. FFO MeSVA 2022/Department of Life, Health, and Environmental Sciences, University of L'Aquila
  2. FFO MeSVA 2023/Department of Life, Health, and Environmental Sciences, University of L'Aquila

MeSH Term

Humans
Skin Aging
Skin
Melanocytes
Keratinocytes
Fibroblasts
Models, Biological
Printing, Three-Dimensional
Bioprinting
Cell Culture Techniques, Three Dimensional

Word Cloud

Created with Highcharts 10.0.0skinaging3DhumanmodelsresearchtechnologiesSkinusingreviewvitroreconstructedbioprintinginfluencedintrinsicextrinsicfactorsprogressivelyimpairfunctionalitytimeInvestigatingprocessrequiresthoroughinnovativeexploresusecultureservingvaluablealternativesanimalonesaimhighlightbenefitsnecessityimprovingmethodologyanalyzingmolecularmechanismsunderlyingTraditional2Dincludingmonolayerskeratinocytesfibroblastsmelanocytesevenprovidingcost-effectivestraightforwardmethodsstudycriticalprocessesextracellularmatrixdegradationpigmentationeffectssecretomecellsfailreplicatecomplextissuearchitectureintricatedinteractionsAdvancedorganoidcultures"skin-on-chip"considerablyenhancephysiologicalrelevanceenablingaccuraterepresentationpeculiarfeaturesreportingadvantageslimitationshighlightsimportanceadvancedsystemsdeveloppracticalanti-agingpreventivereparativeapproachesimprovetranslationalfieldexplorationwillprovidenewopportunitiespreviouslyunexploredknowledgeModelsCurrentlyProposedInvestigateHumanAgingExplorePreventiveReparativeApproaches:DescriptiveReviewpseudo-3Dsystemmicrobiotaorganoidsskin-on-chip

Similar Articles

Cited By