'Exerkines': A Comprehensive Term for the Factors Produced in Response to Exercise.

Giuseppe Novelli, Giuseppe Calcaterra, Federico Casciani, Sergio Pecorelli, Jawahar L Mehta
Author Information
  1. Giuseppe Novelli: Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00173 Rome, Italy. ORCID
  2. Giuseppe Calcaterra: Postgraduate Medical School of Cardiology, University of Palermo, 90127 Palermo, Italy.
  3. Federico Casciani: Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00173 Rome, Italy.
  4. Sergio Pecorelli: Giovanni Lorenzini Medical Foundation, 20129 Milan, Italy. ORCID
  5. Jawahar L Mehta: Giovanni Lorenzini Medical Foundation, 20129 Milan, Italy. ORCID

Abstract

Regular exercise and physical activity are now considered lifestyle factors with positive effects on human health. Physical activity reduces disease burden, protects against the onset of pathologies, and improves the clinical course of disease. Unlike pharmacological therapies, the effects mediated by exercise are not limited to a specific target organ but act in multiple biological systems simultaneously. Despite the substantial health benefits of physical training, the precise molecular signaling processes that lead to structural and functional tissue adaptation remain largely unknown. Only recently, several bioactive molecules have been discovered that are produced following physical exercise. These molecules are collectively called "exerkines". exerkines are released from various tissues in response to exercise, and play a crucial role in mediating the beneficial effects of exercise on the body. Major discoveries involving exerkines highlight their diverse functions and health implications, particularly in metabolic regulation, neuroprotection, and muscle adaptation. These molecules, including peptides, nucleic acids, lipids, and microRNAs, act through paracrine, endocrine, and autocrine pathways to exert their effects on various organs and tissues. exerkines represent a complex network of signaling molecules that mediate the multiple benefits of exercise. Their roles in metabolic regulation, neuroprotection, and muscle adaptation highlight the importance of physical activity in maintaining health and preventing disease.

Keywords

References

  1. Sci Rep. 2023 Dec 4;13(1):21337 [PMID: 38049500]
  2. PLoS Genet. 2014 Jul 10;10(7):e1004458 [PMID: 25010591]
  3. Nat Rev Endocrinol. 2012 Apr 03;8(8):457-65 [PMID: 22473333]
  4. BMC Cancer. 2023 Sep 20;23(1):889 [PMID: 37730552]
  5. Front Mol Biosci. 2023 Jun 15;10:1154872 [PMID: 37398548]
  6. JAMA. 2018 Nov 20;320(19):2020-2028 [PMID: 30418471]
  7. Nature. 2024 Jun;630(8017):720-727 [PMID: 38839949]
  8. JAMA Neurol. 2013 Feb;70(2):156-7 [PMID: 23117841]
  9. Signal Transduct Target Ther. 2022 Nov 30;7(1):383 [PMID: 36446784]
  10. Sci Adv. 2022 Sep 9;8(36):eabo3192 [PMID: 36070371]
  11. Acta Physiol (Oxf). 2023 Apr;237(4):e13953 [PMID: 36815281]
  12. Int J Mol Sci. 2017 Jun 13;18(6): [PMID: 28608819]
  13. Sports Health. 2022 Jul-Aug;14(4):508-517 [PMID: 34806474]
  14. Curr Protein Pept Sci. 2022;23(7):437-455 [PMID: 35770405]
  15. Stress Health. 2023 Sep;39(S1):14-21 [PMID: 37226691]
  16. Nat Commun. 2020 Jan 24;11(1):470 [PMID: 31980607]
  17. Neuroimage Clin. 2017 Oct 31;17:272-284 [PMID: 29527475]
  18. Front Aging Neurosci. 2022 Aug 31;14:965190 [PMID: 36118704]
  19. Nutrients. 2024 Jan 30;16(3): [PMID: 38337694]
  20. Nutr Metab (Lond). 2011 Oct 05;8:68 [PMID: 21975196]
  21. Nat Biomed Eng. 2024 Jan;8(1):11-29 [PMID: 36658343]
  22. Front Physiol. 2019 Mar 29;10:287 [PMID: 30984014]
  23. Front Endocrinol (Lausanne). 2022 Dec 06;13:1069404 [PMID: 36561562]
  24. Front Cardiovasc Med. 2022 Jul 22;9:881526 [PMID: 35935623]
  25. Prog Cardiovasc Dis. 2011 May-Jun;53(6):471-9 [PMID: 21545934]
  26. Elife. 2016 Nov 17;5: [PMID: 27852436]
  27. Endokrynol Pol. 2022;73(1):96-102 [PMID: 35119090]
  28. Nat Commun. 2023 Aug 16;14(1):4375 [PMID: 37587147]
  29. Cell. 2020 Jun 25;181(7):1464-1474 [PMID: 32589957]
  30. Menopause. 2022 May 01;29(5):504-513 [PMID: 35486944]
  31. Front Physiol. 2021 Aug 12;12:709807 [PMID: 34456749]
  32. Cold Spring Harb Perspect Biol. 2014 Sep 04;6(10):a016295 [PMID: 25190079]
  33. Int J Environ Res Public Health. 2020 Apr 14;17(8): [PMID: 32295130]
  34. Neuroimmunomodulation. 2012;19(5):304-8 [PMID: 22777162]
  35. J Sport Health Sci. 2019 Sep;8(5):422-441 [PMID: 31534817]
  36. J Neurol Neuromedicine. 2016;1(2):37-40 [PMID: 27468429]
  37. Signal Transduct Target Ther. 2024 May 29;9(1):138 [PMID: 38806473]
  38. Eur J Prev Cardiol. 2017 Jul;24(10):1017-1031 [PMID: 28420250]
  39. J Physiol Sci. 2023 Nov 14;73(1):30 [PMID: 37964253]
  40. Cold Spring Harb Perspect Med. 2018 Mar 1;8(3): [PMID: 28490541]
  41. Physiol Rev. 2008 Oct;88(4):1379-406 [PMID: 18923185]
  42. J Physiol. 2000 Nov 15;529 Pt 1:237-42 [PMID: 11080265]
  43. J Sci Sport Exerc. 2021;3(2):147-157 [PMID: 38624470]
  44. J Sport Health Sci. 2023 Mar;12(2):147-157 [PMID: 36351545]
  45. Int J Mol Sci. 2022 Sep 02;23(17): [PMID: 36077426]
  46. Immunol Rev. 2023 Oct;319(1):65-80 [PMID: 37158427]
  47. Med Sci Sports Exerc. 2024 May 1;56(5):927-932 [PMID: 38115226]
  48. Eur J Sport Sci. 2024 Jun;24(6):766-776 [PMID: 38874986]
  49. Cancer Cell. 2022 Jul 11;40(7):720-737.e5 [PMID: 35660135]
  50. J Exp Biol. 2016 Jan;219(Pt 2):205-13 [PMID: 26792332]
  51. J Clin Med. 2024 Mar 29;13(7): [PMID: 38610750]
  52. Nat Rev Endocrinol. 2022 May;18(5):273-289 [PMID: 35304603]
  53. J Sci Med Sport. 1999 Oct;2(3):234-52 [PMID: 10668761]
  54. PeerJ. 2024 Apr 29;12:e17267 [PMID: 38699186]
  55. J Physiol. 2011 Aug 15;589(Pt 16):3983-94 [PMID: 21690193]
  56. Genes (Basel). 2023 Feb 14;14(2): [PMID: 36833413]
  57. Cell Metab. 2012 Mar 7;15(3):405-11 [PMID: 22405075]
  58. J Obstet Gynaecol Can. 2017 Jul;39(7):545-558 [PMID: 28625282]
  59. Obesity (Silver Spring). 2024 Aug;32(8):1465-1473 [PMID: 38853594]
  60. Front Mol Neurosci. 2024 Jan 05;16:1305208 [PMID: 38249295]
  61. Front Physiol. 2023 Apr 13;14:1174926 [PMID: 37123278]
  62. Eur J Sport Sci. 2023 Apr;23(4):625-636 [PMID: 35152857]
  63. EMBO Mol Med. 2024 Mar;16(3):432-444 [PMID: 38321233]
  64. Int J Mol Sci. 2019 Dec 12;20(24): [PMID: 31842522]
  65. Curr Sports Med Rep. 2023 Aug 01;22(8):284-289 [PMID: 37549214]
  66. Int J Mol Sci. 2023 Feb 03;24(3): [PMID: 36769362]
  67. Cytokine Growth Factor Rev. 2024 Apr;76:48-76 [PMID: 38220583]
  68. Nature. 2024 May;629(8010):174-183 [PMID: 38693412]
  69. Cell Metab. 2024 Apr 2;36(4):702-724 [PMID: 38262420]
  70. Int J Sport Nutr Exerc Metab. 2021 Oct 25;32(1):49-61 [PMID: 34697259]
  71. Epigenomics. 2015 Aug;7(5):717-31 [PMID: 25864559]
  72. Front Endocrinol (Lausanne). 2023 Feb 10;14:1106529 [PMID: 36843614]
  73. Am J Physiol Endocrinol Metab. 2015 May 1;308(9):E805-21 [PMID: 25690453]
  74. JCI Insight. 2024 Aug 22;9(16): [PMID: 39171527]
  75. Front Physiol. 2021 Jul 22;12:682891 [PMID: 34366881]
  76. JACC Basic Transl Sci. 2023 Oct 18;9(4):535-552 [PMID: 38680954]

Word Cloud

Created with Highcharts 10.0.0exercisephysicaleffectshealthmoleculesactivitydiseaseadaptationactmultiplebenefitssignalingExerkinesvarioustissuesexerkineshighlightmetabolicregulationneuroprotectionmuscleRegularnowconsideredlifestylefactorspositivehumanPhysicalreducesburdenprotectsonsetpathologiesimprovesclinicalcourseUnlikepharmacologicaltherapiesmediatedlimitedspecifictargetorganbiologicalsystemssimultaneouslyDespitesubstantialtrainingprecisemolecularprocessesleadstructuralfunctionaltissueremainlargelyunknownrecentlyseveralbioactivediscoveredproducedfollowingcollectivelycalled"exerkines"releasedresponseplaycrucialrolemediatingbeneficialbodyMajordiscoveriesinvolvingdiversefunctionsimplicationsparticularlyincludingpeptidesnucleicacidslipidsmicroRNAsparacrineendocrineautocrinepathwaysexertorgansrepresentcomplexnetworkmediaterolesimportancemaintainingpreventing'Exerkines':ComprehensiveTermFactorsProducedResponseExercisebiomoleculesinflammationomics

Similar Articles

Cited By (1)