Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities.

Razia Khan Sharme, Manuel Quijada, Mauricio Terrones, Mukti M Rana
Author Information
  1. Razia Khan Sharme: Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA.
  2. Manuel Quijada: NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA.
  3. Mauricio Terrones: Department of Physics, The Pennsylvania State University, 104 Davey Lab, PMB 196, University Park, PA 16802, USA.
  4. Mukti M Rana: Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA. ORCID

Abstract

Thin conducting films are distinct from bulk materials and have become prevalent over the past decades as they possess unique physical, electrical, optical, and mechanical characteristics. Comprehending these essential properties for developing novel materials with tailored features for various applications is very important. Research on these conductive thin films provides us insights into the fundamental principles, behavior at different dimensions, interface phenomena, etc. This study comprehensively analyzes the intricacies of numerous commonly used thin conducting films, covering from the fundamentals to their advanced preparation methods. Moreover, the article discusses the impact of different parameters on those thin conducting films' electronic and optical properties. Finally, the recent future trends along with challenges are also highlighted to address the direction the field is heading towards. It is imperative to review the study to gain insight into the future development and advancing materials science, thus extending innovation and addressing vital challenges in diverse technological domains.

Keywords

References

  1. Sensors (Basel). 2018 Jun 02;18(6): [PMID: 29865261]
  2. J Phys Chem B. 2006 Nov 16;110(45):22365-73 [PMID: 17091976]
  3. ACS Appl Mater Interfaces. 2009 Mar;1(3):661-7 [PMID: 20355988]
  4. Light Sci Appl. 2017 Jun 02;6(6):e16277 [PMID: 30167262]
  5. Biophys Rev. 2017 Apr;9(2):79-89 [PMID: 28510082]
  6. ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3223-3245 [PMID: 28045492]
  7. Adv Mater. 2018 Nov;30(45):e1800865 [PMID: 30063268]
  8. Nanoscale. 2018 Mar 29;10(13):5764-5792 [PMID: 29542765]
  9. Sci Rep. 2016 Feb 26;6:21937 [PMID: 26916497]
  10. ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23899-908 [PMID: 27564678]
  11. Sci Rep. 2015 Jul 24;5:12341 [PMID: 26205209]
  12. Phys Rev B Condens Matter. 1990 Mar 15;41(8):5202-5213 [PMID: 9994380]
  13. Chem Rev. 2021 Jun 9;121(11):6321-6372 [PMID: 34047544]
  14. Phys Rev B Condens Matter. 1991 Jun 1;43(16):12772-12789 [PMID: 9997091]
  15. Nat Commun. 2014 Mar 03;5:3410 [PMID: 24583928]
  16. J Electron Microsc (Tokyo). 2010 Aug;59 Suppl 1:S107-15 [PMID: 20543158]
  17. Front Chem. 2021 Dec 21;9:762896 [PMID: 34993175]
  18. Sci Rep. 2020 Jan 20;10(1):638 [PMID: 31959884]
  19. Adv Colloid Interface Sci. 2021 Apr;290:102385 [PMID: 33662599]
  20. Nat Nanotechnol. 2012 Nov;7(11):699-712 [PMID: 23132225]
  21. Small. 2013 Oct 11;9(19):3295-300 [PMID: 23420782]
  22. Materials (Basel). 2016 Jan 20;9(1): [PMID: 28787863]
  23. Phys Rev B Condens Matter. 1991 Feb 15;43(6):4809-4819 [PMID: 9997851]
  24. Adv Mater. 2023 Nov;35(46):e2303272 [PMID: 37453927]
  25. Sci Rep. 2016 Feb 02;6:20399 [PMID: 26833398]
  26. ACS Nano. 2013 Jul 23;7(7):6297-302 [PMID: 23876048]
  27. Chem Soc Rev. 2004 Jan 10;33(1):23-31 [PMID: 14737506]
  28. ACS Appl Mater Interfaces. 2020 Aug 12;12(32):36437-36448 [PMID: 32672936]
  29. J R Soc Interface. 2010 Oct 6;7 Suppl 5:S559-79 [PMID: 20610422]
  30. Appl Opt. 2002 Jun 1;41(16):3053-60 [PMID: 12064380]
  31. Nanomicro Lett. 2017;9(1):3 [PMID: 30460300]
  32. Sci Rep. 2013;3:1595 [PMID: 23549208]
  33. Nature. 2010 Nov 25;468(7323):549-52 [PMID: 21068724]
  34. ACS Appl Mater Interfaces. 2020 Jun 10;12(23):26177-26183 [PMID: 32402191]
  35. Polymers (Basel). 2020 Apr 27;12(5): [PMID: 32349454]
  36. Chem Rev. 2010 Jan;110(1):132-45 [PMID: 19610631]
  37. Molecules. 2022 Sep 23;27(19): [PMID: 36234821]
  38. Chem Rev. 2015 Jun 10;115(11):4571-606 [PMID: 25933130]
  39. Nano Lett. 2014 Mar 12;14(3):1158-63 [PMID: 24490629]
  40. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12929-12933 [PMID: 27807139]
  41. Materials (Basel). 2020 Dec 03;13(23): [PMID: 33287200]
  42. Sci Rep. 2020 Jan 21;10(1):771 [PMID: 31964954]
  43. Sci Total Environ. 2019 Oct 20;688:1092-1101 [PMID: 31726540]
  44. ACS Omega. 2024 Feb 29;9(10):11081-11109 [PMID: 38497021]
  45. ACS Appl Mater Interfaces. 2013 May 22;5(10):3983-94 [PMID: 23668863]
  46. Adv Mater. 2020 Feb;32(5):e1901958 [PMID: 31273850]
  47. Adv Mater. 2018 Mar;30(10): [PMID: 29319214]
  48. Adv Mater. 2015 Jun 10;27(22):3349-76 [PMID: 25920067]
  49. Chem Soc Rev. 2011 Nov;40(11):5242-53 [PMID: 21695333]
  50. Chem Soc Rev. 2018 Aug 13;47(16):6101-6127 [PMID: 30022215]
  51. Materials (Basel). 2017 Dec 27;11(1): [PMID: 29280964]
  52. Micromachines (Basel). 2019 May 16;10(5): [PMID: 31100913]
  53. Chem Rev. 2014 Aug 13;114(15):7487-556 [PMID: 24926524]
  54. Angew Chem Int Ed Engl. 2017 Apr 24;56(18):4991-4995 [PMID: 28371057]
  55. Langmuir. 2016 Nov 15;32(45):11958-11972 [PMID: 27759960]
  56. Adv Mater. 2017 Dec;29(47): [PMID: 29094458]
  57. Int J Mol Sci. 2010 Apr 12;11(4):1527-45 [PMID: 20480033]
  58. Materials (Basel). 2021 Jun 14;14(12): [PMID: 34198592]
  59. J Am Chem Soc. 2016 Nov 16;138(45):14962-14969 [PMID: 27788578]
  60. Int J Mol Sci. 2021 Sep 29;22(19): [PMID: 34638851]
  61. RSC Adv. 2019 Nov 1;9(61):35384-35391 [PMID: 35528061]
  62. Sci Rep. 2016 Jan 29;6:20343 [PMID: 26822972]
  63. Materials (Basel). 2023 Jun 29;16(13): [PMID: 37445032]
  64. Nanomaterials (Basel). 2022 Mar 30;12(7): [PMID: 35407267]
  65. Nat Mater. 2003 Jul;2(7):453-6 [PMID: 12806386]
  66. Nanoscale. 2021 Mar 21;13(11):5594-5619 [PMID: 33720254]
  67. J Biomed Opt. 2021 Oct;26(10): [PMID: 34713647]
  68. Sci Rep. 2015 Dec 03;5:17684 [PMID: 26631493]
  69. Chem Rev. 2019 Mar 13;119(5):3193-3295 [PMID: 30387358]
  70. Langmuir. 2009 Jan 6;25(1):509-14 [PMID: 19053619]
  71. J Nanostructure Chem. 2021;11(3):323-341 [PMID: 34367531]
  72. Chem Rev. 2018 Jul 25;118(14):6766-6843 [PMID: 29969244]
  73. Science. 2019 Nov 22;366(6468): [PMID: 31753970]
  74. Small. 2017 Sep;13(35): [PMID: 28639331]
  75. Nano Lett. 2016 Aug 10;16(8):5095-101 [PMID: 27428304]
  76. Small. 2016 Nov;12(44):6052-6075 [PMID: 27753213]
  77. Adv Mater. 2015 Oct 14;27(38):5778-84 [PMID: 26016695]
  78. ACS Appl Mater Interfaces. 2022 Apr 13;14(14):16839-16845 [PMID: 35363462]
  79. Carbohydr Polym. 2020 Apr 15;234:115888 [PMID: 32070508]
  80. RSC Adv. 2020 Aug 19;10(51):30529-30602 [PMID: 35516069]
  81. Chem Soc Rev. 2021 Mar 21;50(6):3889-3956 [PMID: 33523063]
  82. Phys Chem Chem Phys. 2006 Oct 7;8(37):4265-79 [PMID: 16986069]
  83. J R Soc Interface. 2017 Sep;14(134): [PMID: 28931637]
  84. Acc Chem Res. 2010 Nov 16;43(11):1396-407 [PMID: 20726543]
  85. Chem Rev. 2013 May 8;113(5):3766-98 [PMID: 23286380]
  86. Science. 2018 Nov 2;362(6414):547-553 [PMID: 30385571]
  87. J Mater Sci Mater Med. 2022 Jun 23;33(7):57 [PMID: 35737197]
  88. J Nanosci Nanotechnol. 2019 Mar 1;19(3):1455-1462 [PMID: 30469205]
  89. Adv Mater. 2012 Jun 12;24(22):2945-86 [PMID: 22573414]
  90. Data Brief. 2015 Dec 11;6:184-8 [PMID: 26862556]
  91. Rep Prog Phys. 2013 Mar;76(3):034501 [PMID: 23411598]
  92. Adv Mater. 2020 Jul;32(28):e1907296 [PMID: 32483883]
  93. Chem Soc Rev. 2017 Oct 2;46(19):5730-5770 [PMID: 28682401]
  94. Chem Soc Rev. 2016 Jan 7;45(1):118-51 [PMID: 26593874]
  95. Nanotechnology. 2019 Aug 2;30(31):312001 [PMID: 30974423]
  96. ACS Appl Mater Interfaces. 2010 Dec;2(12):3447-54 [PMID: 21105714]
  97. Phys Chem Chem Phys. 2013 Mar 7;15(9):3027-46 [PMID: 23165724]
  98. Science. 2015 Aug 14;349(6249):aab2750 [PMID: 26273059]
  99. Adv Mater. 2021 Apr;33(14):e2004754 [PMID: 33624900]
  100. Rep Prog Phys. 2020 Mar;83(3):036501 [PMID: 31923906]
  101. Sci Technol Adv Mater. 2019 May 23;20(1):465-496 [PMID: 31164953]
  102. Mikrochim Acta. 2019 Jun 11;186(7):420 [PMID: 31187268]

Grants

  1. FA9550-22-1-0534, FA9550-23-1-0447/Air Force Office of Scientific Research
  2. 80NSSC24K0403/NASA Bridge Funding
  3. ATOMIC/NSF-IUCRC Center for Atomically Thin Multifunctional Coatings