The Comparative Characterization of a Hypervirulent Bacteremia Clinical Isolate Reveals a Novel Mechanism of Pathogenesis.

Payam Benyamini
Author Information
  1. Payam Benyamini: The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.

Abstract

is an opportunistic Gram-negative pathogen with exquisite survival capabilities under various environmental conditions and displays widespread resistance to common antibiotics. is a leading cause of nosocomial infections that result in high morbidity and mortality rates. Accordingly, when multidrug resistance rates surpass threshold levels, the percentage of clinical isolates surges. Research into has increased in the past decade, and multiple mechanisms of pathogenesis have been identified, including mechanisms underlying biofilm development, quorum sensing, exotoxin production, secretion system utilization, and more. To date, the two gold-standard strains used to investigate different aspects of pathogenesis include ATCC 17978 and ATCC 19606. Here, we report a comparative characterization study of three additional clinical isolates obtained from different infection types and derived from different anatomical regions of infected patients. The comparison of three clinical isolates in addition to the ATCC strains revealed that the hypervirulent bacteremia clinical isolate, known as HUMC1, employs a completely different mechanism of pathogenesis when compared to all its counterparts. In stark contrast to the other genetic variants, the hypervirulent HUMC1 isolate does not form biofilms, is antibiotic-susceptible, and has the capacity to reach higher levels of quorum compared to the other clinically relevant strains. Our data also reveal that HUMC1 does not shed endotoxin into the extracellular milieu, rather secretes the evolutionarily conserved, host-mimicking, Zonula occludens toxin (Zot). Taken together, our hypothesis that HUMC1 cells have the ability to reach higher levels of quorum and lack biofilm production and endotoxin shedding, accompanied by the substantial elaboration of Zot, suggests a novel mechanism of pathogenesis that appears to afford the hypervirulent pathogen with stealth-like capabilities when disseminating through the circulatory system in a state of bacteremia.

Keywords

References

  1. Protein Sci. 2020 Mar;29(3):789-802 [PMID: 31930600]
  2. Antimicrob Agents Chemother. 2022 May 17;66(5):e0005422 [PMID: 35471042]
  3. Toxins (Basel). 2024 Jun 14;16(6): [PMID: 38922165]
  4. Ann Clin Lab Sci. 1988 Jan-Feb;18(1):58-71 [PMID: 3281562]
  5. Clin Infect Dis. 2007 Jun 15;44(12):1577-84 [PMID: 17516401]
  6. Toxins (Basel). 2020 Apr 02;12(4): [PMID: 32252376]
  7. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  8. Front Microbiol. 2015 Sep 15;6:963 [PMID: 26441897]
  9. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  10. PLoS Pathog. 2017 Sep 21;13(9):e1006452 [PMID: 28934339]
  11. Front Cell Infect Microbiol. 2022 Sep 16;12:964539 [PMID: 36189355]
  12. Vaccines (Basel). 2021 Jun 01;9(6): [PMID: 34205838]
  13. Clin Infect Dis. 2023 May 1;76(Suppl 2):S166-S178 [PMID: 37125466]
  14. Nucleic Acids Res. 2015 Jul 1;43(W1):W580-4 [PMID: 25845596]
  15. J Clin Invest. 1995 Aug;96(2):710-20 [PMID: 7635964]
  16. J Neurochem. 2000 Jan;74(1):320-6 [PMID: 10617135]
  17. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W29-33 [PMID: 23609542]
  18. Microbiol Res. 2021 Jun;247:126722 [PMID: 33618061]
  19. FEMS Microbiol Rev. 2009 Jan;33(1):206-24 [PMID: 19067751]
  20. Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531 [PMID: 36408920]
  21. Antimicrob Agents Chemother. 2013 Dec;57(12):6270-5 [PMID: 24100492]
  22. EXS. 2010;100:1-29 [PMID: 20358680]
  23. JAMA. 2008 Jun 4;299(21):2513-4 [PMID: 18523219]
  24. J Med Microbiol. 2018 Jun;67(6):790-797 [PMID: 29693543]
  25. Annu Rev Microbiol. 2004;58:161-81 [PMID: 15487934]
  26. Cold Spring Harb Perspect Med. 2013 Feb 01;3(2):a013573 [PMID: 23378599]
  27. J Appl Microbiol. 2020 Jan;128(1):15-27 [PMID: 31102552]
  28. Contrib Nephrol. 2010;167:14-24 [PMID: 20519895]
  29. Microbiol Res. 2022 Jul;260:127032 [PMID: 35483311]
  30. Lancet Infect Dis. 2009 Apr;9(4):245-55 [PMID: 19324297]
  31. Antimicrob Agents Chemother. 2021 Jul 16;65(8):e0057021 [PMID: 34097477]
  32. Epidemiol Infect. 2008 Aug;136(8):1009-19 [PMID: 17892629]
  33. Emerg Infect Dis. 2018 Apr;24(4):727-734 [PMID: 29553339]
  34. Annu Rev Cell Dev Biol. 2002;18:315-44 [PMID: 12142277]
  35. Lancet Infect Dis. 2008 Dec;8(12):751-62 [PMID: 19022191]
  36. J Bacteriol. 2021 Mar 23;203(8): [PMID: 33495249]
  37. J Bacteriol. 1968 May;95(5):1520-41 [PMID: 5650064]
  38. Anaerobe. 2017 Dec;48:249-256 [PMID: 29031928]
  39. Crit Rev Microbiol. 2010 May;36(2):146-67 [PMID: 20210692]
  40. N Engl J Med. 1998 Aug 20;339(8):520-32 [PMID: 9709046]
  41. Sci Rep. 2023 Jul 13;13(1):11347 [PMID: 37443351]
  42. Int J Pharm. 2005 Dec 8;306(1-2):122-31 [PMID: 16274945]
  43. Front Immunol. 2022 Sep 27;13:941010 [PMID: 36238282]
  44. J Microbiol Biotechnol. 2018 Sep 28;28(9):1413-1425 [PMID: 29926707]
  45. Mil Med. 2006 Sep;171(9):826-9 [PMID: 17036599]
  46. Infection. 2022 Jun;50(3):553-564 [PMID: 34606056]
  47. Nucleic Acids Res. 2003 Jul 1;31(13):3381-5 [PMID: 12824332]
  48. Antimicrob Agents Chemother. 2007 Oct;51(10):3471-84 [PMID: 17646423]
  49. Infect Control Hosp Epidemiol. 2010 Feb;31(2):196-7 [PMID: 20030564]
  50. Nat Rev Microbiol. 2018 Feb;16(2):91-102 [PMID: 29249812]
  51. Clin Infect Dis. 2006 Oct 15;43(8):1045-51 [PMID: 16983619]
  52. Nucleic Acids Res. 2017 Jul 3;45(W1):W550-W553 [PMID: 28431173]
  53. J Hosp Infect. 2020 Nov;106(3):447-453 [PMID: 32927013]
  54. mSphere. 2017 Apr 26;2(2): [PMID: 28497114]
  55. Antimicrob Resist Infect Control. 2015 Oct 09;4:40 [PMID: 26457183]
  56. J Clin Microbiol. 2008 Aug;46(8):2499-507 [PMID: 18524965]
  57. NPJ Antimicrob Resist. 2023;1(1):11 [PMID: 38686217]
  58. J Biol Chem. 2001 Jun 1;276(22):19160-5 [PMID: 11278543]
  59. J Pharm Sci. 2003 Feb;92(2):414-23 [PMID: 12532391]
  60. Front Immunol. 2022 May 26;13:900509 [PMID: 35720310]
  61. Front Microbiol. 2016 Feb 01;7:42 [PMID: 26870008]
  62. Clin Infect Dis. 2009 Jan 1;48(1):1-12 [PMID: 19035777]
  63. Nat Rev Microbiol. 2007 Dec;5(12):939-51 [PMID: 18007677]
  64. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  65. Diagn Microbiol Infect Dis. 2021 Feb;99(2):115229 [PMID: 33161239]
  66. Expert Rev Anti Infect Ther. 2008 Feb;6(1):39-49 [PMID: 18251663]
  67. Gut. 2002 May;50 Suppl 3:III9-14 [PMID: 11953326]
  68. Int J Antimicrob Agents. 2007 Jan;29(1):112-3 [PMID: 17134880]
  69. FEMS Microbiol Rev. 2010 Jul;34(4):476-95 [PMID: 20236330]
  70. Toxins (Basel). 2020 Sep 04;12(9): [PMID: 32899816]
  71. Interdiscip Sci. 2022 Jun;14(2):285-310 [PMID: 34826045]
  72. Clin Chim Acta. 2002 Sep;323(1-2):59-72 [PMID: 12135807]
  73. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5242-6 [PMID: 2052603]
  74. Virulence. 2014 Jan 1;5(1):213-8 [PMID: 24193365]
  75. Adv Drug Deliv Rev. 2006 Apr 20;58(1):15-28 [PMID: 16517003]
  76. Medicine (Baltimore). 2014 Jul;93(5):202-210 [PMID: 25181313]
  77. Clin Infect Dis. 2008 Aug 15;47(4):444-9 [PMID: 18611157]
  78. Int J Infect Dis. 2008 Jan;12(1):16-21 [PMID: 17513154]
  79. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9 [PMID: 18440982]
  80. J Infect Dis. 2015 Apr 15;211(8):1296-305 [PMID: 25378635]

MeSH Term

Acinetobacter baumannii
Humans
Biofilms
Bacteremia
Acinetobacter Infections
Virulence
Quorum Sensing
Anti-Bacterial Agents
Animals

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0pathogenesisclinicalquorumdifferentHUMC1resistancelevelsisolatesstrainsATCChypervirulentmechanismZotGram-negativepathogencapabilitiesratesmultidrugmechanismsbiofilmsensingproductionsystemthreeinfectionbacteremiaisolatecomparedbiofilmsreachhigherendotoxinZonulaoccludenstoxinopportunisticexquisitesurvivalvariousenvironmentalconditionsdisplayswidespreadcommonantibioticsleadingcausenosocomialinfectionsresulthighmorbiditymortalityAccordinglysurpassthresholdpercentagesurgesResearchincreasedpastdecademultipleidentifiedincludingunderlyingdevelopmentexotoxinsecretionutilizationdatetwogold-standardusedinvestigateaspectsinclude1797819606reportcomparativecharacterizationstudyadditionalobtainedtypesderivedanatomicalregionsinfectedpatientscomparisonadditionrevealedknownemployscompletelycounterpartsstarkcontrastgeneticvariantsformantibiotic-susceptiblecapacityclinicallyrelevantdataalsorevealshedextracellularmilieurathersecretesevolutionarilyconservedhost-mimickingTakentogetherhypothesiscellsabilitylacksheddingaccompaniedsubstantialelaborationsuggestsnovelappearsaffordstealth-likedisseminatingcirculatorystateComparativeCharacterizationHypervirulentBacteremiaClinicalIsolateRevealsNovelMechanismPathogenesisAcinetobacterbaumanniibacteriainfectiousdiseasesstealth

Similar Articles

Cited By