Impact of Extremely Low-Frequency Electromagnetic Fields on Skeletal Muscle of Sedentary Adult Mice: A Pilot Study.

Caterina Morabito, Noemi Di Sinno, Maria A Mariggiò, Simone Guarnieri
Author Information
  1. Caterina Morabito: Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy. ORCID
  2. Noemi Di Sinno: Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
  3. Maria A Mariggiò: Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy. ORCID
  4. Simone Guarnieri: Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy. ORCID

Abstract

Extremely low-frequency electromagnetic fields (ELF-EMFs) are ubiquitous in industrialized environments due to the continuous use of electrical devices. Our previous studies demonstrated that ELF-EMFs affect muscle cells by modulating oxidative stress and enhancing myogenesis. This pilot study investigated these effects on the skeletal muscles of sedentary adult mice, assessing physiological responses to ELF-EMF exposure and potential modulation by antioxidant supplementation. Male C57BL/6 mice were exposed to ELF-EMFs (0.1 or 1.0 mT) for 1 h/day for up to 5 weeks and fed a standard diet without or with N-acetyl-cysteine (NAC). The results showed transient increases in muscle strength (after 2 weeks of exposure at 1.0 mT), potentially linked to muscle fiber recruitment and activation, revealed by higher PAX7 and myosin heavy chain (MyH) expression levels. After ELF-EMF exposure, oxidative status assessment revealed transient increases in the expression levels of SOD1 and catalase enzymes, in total antioxidant capacity, and in protein carbonyl levels, markers of oxidative damage. These effects were partially reduced by NAC. In conclusion, ELF-EMF exposure affects skeletal muscle physiology and NAC supplementation partially mitigates these effects, highlighting the complex interactions between ELF-EMFs and antioxidant pathways in vivo. Further investigations on ELF-EMFs as a therapeutic modality for muscle health are necessary.

Keywords

References

  1. Int J Radiat Biol. 2016;92(4):195-201 [PMID: 26882219]
  2. Health Phys. 2010 Dec;99(6):818-36 [PMID: 21068601]
  3. Electromagn Biol Med. 2024 Jul 24;:1-10 [PMID: 39045872]
  4. Prog Biophys Mol Biol. 2022 Aug;172:50-59 [PMID: 35513112]
  5. Radiat Environ Biophys. 2010 Nov;49(4):731-41 [PMID: 20582429]
  6. Sci Rep. 2023 Apr 28;13(1):6989 [PMID: 37117238]
  7. Biomed Res Int. 2017;2017:2460215 [PMID: 28607928]
  8. Mol Neurobiol. 2016 Aug;53(6):4247-4260 [PMID: 26223801]
  9. Neurochem Int. 2013 Mar;62(4):418-24 [PMID: 23411410]
  10. Elife. 2018 Aug 14;7: [PMID: 30106373]
  11. J Microsc Ultrastruct. 2017 Oct-Dec;5(4):167-176 [PMID: 30023251]
  12. Transl Stroke Res. 2023 Nov 14;: [PMID: 37962771]
  13. Int J Mol Sci. 2017 Oct 18;18(10): [PMID: 29057846]
  14. Front Biosci (Landmark Ed). 2023 Nov 8;28(11):285 [PMID: 38062844]
  15. Int J Mol Sci. 2021 Apr 06;22(7): [PMID: 33917298]
  16. Electromagn Biol Med. 2019;38(1):1-20 [PMID: 30661411]
  17. Bull Exp Biol Med. 2022 Mar;172(5):566-569 [PMID: 35348955]
  18. Biochim Biophys Acta. 2005 Mar 22;1743(1-2):120-9 [PMID: 15777847]
  19. Front Physiol. 2016 Oct 26;7:493 [PMID: 27833566]
  20. PLoS One. 2018 Jul 16;13(7):e0199753 [PMID: 30011321]
  21. Free Radic Biol Med. 2021 Jun;169:84-98 [PMID: 33857627]
  22. Biomed Res Int. 2021 Feb 6;2021:4218086 [PMID: 33628781]
  23. Front Physiol. 2016 Nov 07;7:486 [PMID: 27872595]
  24. Mol Biol Rep. 2020 Jul;47(7):5621-5633 [PMID: 32515000]
  25. Toxicol Ind Health. 2020 Feb;36(2):119-131 [PMID: 32279651]
  26. Gen Physiol Biophys. 2014;33(1):81-90 [PMID: 24334533]
  27. Bioimpacts. 2024;14(4):30064 [PMID: 39104617]
  28. Bioelectromagnetics. 1997;18(2):156-65 [PMID: 9084866]
  29. Stem Cell Res Ther. 2020 Feb 3;11(1):46 [PMID: 32014064]
  30. J Vasc Surg. 2015 Mar;61(3):777-86 [PMID: 24388697]
  31. Int J Mol Sci. 2022 Jul 19;23(14): [PMID: 35887313]
  32. Genet Mol Biol. 2020 May 20;43(1 suppl. 1):e20190096 [PMID: 32453337]
  33. Cell Prolif. 2021 Dec;54(12):e13154 [PMID: 34741480]
  34. Environ Health Perspect. 2004 May;112(6):687-94 [PMID: 15121512]
  35. Free Radic Biol Med. 2010 Feb 15;48(4):579-89 [PMID: 20005945]
  36. J Pain Res. 2020 Jun 12;13:1385-1400 [PMID: 32606905]
  37. Exp Cell Res. 2001 Jul 1;267(1):107-14 [PMID: 11412043]
  38. Front Neurosci. 2023 Oct 06;17:1247021 [PMID: 37869515]
  39. Eur Rev Med Pharmacol Sci. 2019 Apr;23(7):3121-3128 [PMID: 31002166]
  40. Biology (Basel). 2021 Oct 18;10(10): [PMID: 34681155]
  41. Toxicol Pathol. 1999 May-Jun;27(3):267-78 [PMID: 10356702]
  42. Free Radic Biol Med. 2016 Sep;98:18-28 [PMID: 27184955]
  43. Neuromuscul Disord. 2012 May;22(5):427-34 [PMID: 22206641]
  44. Toxicol In Vitro. 2024 Mar;95:105743 [PMID: 38040129]
  45. Electromagn Biol Med. 2016;35(4):343-52 [PMID: 27254779]
  46. Int J Biochem Cell Biol. 2008;40(12):2762-70 [PMID: 18585472]
  47. Technol Health Care. 2022;30(S1):371-382 [PMID: 35124612]
  48. Anesthesiology. 2015 Sep;123(3):603-17 [PMID: 26132720]
  49. Bioelectromagnetics. 2013 Jan;34(1):74-80 [PMID: 22926783]
  50. Environ Res. 2018 May;163:71-79 [PMID: 29427953]
  51. J Appl Physiol (1985). 2004 Oct;97(4):1477-85 [PMID: 15194675]
  52. J Appl Physiol (1985). 2008 Mar;104(3):853-60 [PMID: 18006866]
  53. Bioelectromagnetics. 1981;2(4):381-90 [PMID: 7326059]
  54. Prog Biophys Mol Biol. 2019 Jan;141:25-36 [PMID: 30030071]
  55. Biology (Basel). 2023 Dec 08;12(12): [PMID: 38132332]
  56. Cell Biol Int. 2007 Jun;31(6):546-53 [PMID: 17241791]
  57. Cell Physiol Biochem. 2010;26(6):947-58 [PMID: 21220925]
  58. Antioxidants (Basel). 2021 Jun 16;10(6): [PMID: 34208683]
  59. Med Oncol. 2021 Sep 8;38(10):125 [PMID: 34495398]

MeSH Term

Animals
Electromagnetic Fields
Mice
Male
Pilot Projects
Muscle, Skeletal
Oxidative Stress
Mice, Inbred C57BL
Superoxide Dismutase-1
Acetylcysteine
Myosin Heavy Chains
Antioxidants
PAX7 Transcription Factor
Sedentary Behavior
Muscle Strength
Catalase

Chemicals

Superoxide Dismutase-1
Acetylcysteine
Myosin Heavy Chains
Antioxidants
PAX7 Transcription Factor
Pax7 protein, mouse
Catalase
Sod1 protein, mouse

Word Cloud

Created with Highcharts 10.0.0muscleELF-EMFsoxidativeELF-EMFexposureantioxidant1effects0NAClevelsExtremelystressskeletalmicesupplementationmTweekstransientincreasesrevealedexpressionpartiallylow-frequencyelectromagneticfieldsubiquitousindustrializedenvironmentsduecontinuoususeelectricaldevicespreviousstudiesdemonstratedaffectcellsmodulatingenhancingmyogenesispilotstudyinvestigatedmusclessedentaryadultassessingphysiologicalresponsespotentialmodulationMaleC57BL/6exposedh/day5fedstandarddietwithoutN-acetyl-cysteineresultsshowedstrength2potentiallylinkedfiberrecruitmentactivationhigherPAX7myosinheavychainMyHstatusassessmentSOD1catalaseenzymestotalcapacityproteincarbonylmarkersdamagereducedconclusionaffectsphysiologymitigateshighlightingcomplexinteractionspathwaysvivoinvestigationstherapeuticmodalityhealthnecessaryImpactLow-FrequencyElectromagneticFieldsSkeletalMuscleSedentaryAdultMice:PilotStudyregeneration

Similar Articles

Cited By