Integrated Metabolome, Transcriptome and Long Non-Coding RNA Analysis Reveals Potential Molecular Mechanisms of Sweet Cherry Fruit Ripening.

Gangshuai Liu, Daqi Fu, Xuwei Duan, Jiahua Zhou, Hong Chang, Ranran Xu, Baogang Wang, Yunxiang Wang
Author Information
  1. Gangshuai Liu: Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
  2. Daqi Fu: College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China. ORCID
  3. Xuwei Duan: Institute of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.
  4. Jiahua Zhou: Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
  5. Hong Chang: Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
  6. Ranran Xu: Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
  7. Baogang Wang: Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
  8. Yunxiang Wang: Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.

Abstract

Long non-coding RNAs (lncRNAs), a class of important regulatory factors for many biological processes in plants, have received much attention in recent years. To explore the molecular roles of lncRNAs in sweet cherry fruit ripening, we conducted widely targeted metabolome, transcriptome and lncRNA analyses of sweet cherry fruit at three ripening stages (yellow stage, pink stage, and dark red stage). The results show that the ripening of sweet cherry fruit involves substantial metabolic changes, and the rapid accumulation of anthocyanins (cyanidin 3-rutinoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside) is the main cause of fruit coloration. These ripening-related alterations in the metabolic profile are driven by specific enzyme genes related to the synthesis and decomposition of abscisic acid (ABA), cell wall disintegration, and anthocyanin biosynthesis, as well as transcription factor genes, such as , , and . LncRNAs can target these ripening-related genes to form regulatory modules, incorporated into the sweet cherry fruit ripening regulatory network. Our study reveals that the lncRNA-mRNA module is an important component of the sweet cherry fruit ripening regulatory network. During sweet cherry fruit ripening, the differential expression of lncRNAs will meditate the spatio-temporal specific expression of ripening-related target genes (encoding enzymes and transcription factors related to ABA metabolism, cell wall metabolism and anthocyanin metabolism), thus driving fruit ripening.

Keywords

References

  1. Nat Protoc. 2016 Sep;11(9):1650-67 [PMID: 27560171]
  2. Plant J. 2019 Nov;100(3):572-590 [PMID: 31344284]
  3. J Exp Bot. 2015 Aug;66(15):4483-95 [PMID: 25948705]
  4. Int J Mol Sci. 2020 May 06;21(9): [PMID: 32384685]
  5. PLoS Genet. 2021 Mar 19;17(3):e1009461 [PMID: 33739974]
  6. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80 [PMID: 14681412]
  7. Front Genet. 2022 Aug 09;13:932207 [PMID: 36017497]
  8. Front Plant Sci. 2022 Dec 13;13:1078085 [PMID: 36582646]
  9. Annu Rev Plant Biol. 2017 Apr 28;68:61-84 [PMID: 28226232]
  10. Genome Biol. 2012 Nov 26;13(11):R107 [PMID: 23181609]
  11. Plant Cell Physiol. 2018 Sep 1;59(9):1844-1859 [PMID: 29800352]
  12. BMC Genom Data. 2023 Mar 13;24(1):17 [PMID: 36915036]
  13. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  14. Int J Mol Sci. 2022 Jul 03;23(13): [PMID: 35806406]
  15. Plant Biotechnol J. 2016 Nov;14(11):2120-2133 [PMID: 27107393]
  16. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  17. Plants (Basel). 2022 Jun 07;11(12): [PMID: 35736682]
  18. Appl Microbiol Biotechnol. 2020 Mar;104(6):2333-2342 [PMID: 31989226]
  19. Front Plant Sci. 2016 Mar 29;7:335 [PMID: 27594858]
  20. PLoS One. 2013 Aug 14;8(8):e71152 [PMID: 23967161]
  21. Trends Plant Sci. 2013 Sep;18(9):477-83 [PMID: 23870661]
  22. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  23. Planta. 2019 Jun;249(6):1799-1810 [PMID: 30840178]
  24. Hortic Res. 2022 Aug 25;9:uhac190 [PMID: 36329721]
  25. DNA Res. 2018 Oct 1;25(5):465-476 [PMID: 29873696]
  26. Front Plant Sci. 2023 Mar 16;14:1079221 [PMID: 37008483]
  27. Int J Mol Sci. 2018 Jul 09;19(7): [PMID: 29987249]
  28. Planta. 2020 Oct 24;252(5):92 [PMID: 33099688]
  29. Int J Mol Sci. 2022 Oct 18;23(20): [PMID: 36293335]
  30. Physiol Plant. 2022 Nov;174(6):e13834 [PMID: 36437693]
  31. Plant Cell. 2021 Oct 11;33(10):3309-3330 [PMID: 34270784]
  32. PLoS One. 2018 Jul 9;13(7):e0200002 [PMID: 29985922]
  33. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 [PMID: 24288371]
  34. Ann Bot. 2019 Feb 15;123(3):469-482 [PMID: 30376036]
  35. Front Plant Sci. 2022 Aug 03;13:884476 [PMID: 35991462]
  36. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9 [PMID: 17631615]
  37. Front Plant Sci. 2017 Dec 19;8:2166 [PMID: 29312407]
  38. BMC Plant Biol. 2019 Aug 22;19(1):369 [PMID: 31438855]
  39. Plant Physiol. 2022 Nov 28;190(4):2501-2518 [PMID: 36130298]
  40. Nucleic Acids Res. 2013 Sep;41(17):e166 [PMID: 23892401]
  41. Trends Plant Sci. 2007 Jun;12(6):267-77 [PMID: 17499007]
  42. Plants (Basel). 2020 Mar 25;9(4): [PMID: 32218186]
  43. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  44. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  45. Int J Mol Sci. 2023 Jun 26;24(13): [PMID: 37445841]
  46. Front Plant Sci. 2022 Oct 11;13:943547 [PMID: 36304394]
  47. Plant Cell. 2023 May 29;35(6):1762-1786 [PMID: 36738093]
  48. Sci Rep. 2019 Mar 5;9(1):3552 [PMID: 30837504]
  49. Nucleic Acids Res. 2013 Apr 1;41(6):e74 [PMID: 23335781]
  50. J Exp Bot. 2014 Aug;65(16):4577-88 [PMID: 24821949]
  51. PLoS One. 2015 May 15;10(5):e0126991 [PMID: 25978735]

Grants

  1. CARS-30/Earmarked Fund for CARS
  2. QNJJ202228/Young Investigator Fund of Beijing Academy of Agricultural and Forestry Sciences
  3. BAIC04-2023/Beijing Innovation Consortium of Agriculture Research System
  4. 31901732/National Natural Science Foundation of China

MeSH Term

Fruit
Anthocyanins
Gene Expression Regulation, Plant
Prunus avium
RNA, Long Noncoding
Transcriptome
Metabolome
Abscisic Acid
Gene Expression Profiling
Plant Proteins
Gene Regulatory Networks
Galactosides

Chemicals

Anthocyanins
RNA, Long Noncoding
Abscisic Acid
Plant Proteins
cyanidin 3-rutinoside
cyanidin 3-galactoside
Galactosides

Word Cloud

Created with Highcharts 10.0.0fruitripeningsweetcherryregulatorygeneslncRNAsstagecyanidinripening-relatedcellwallanthocyanintranscriptionmetabolismLongimportantfactorsmetabolicspecificrelatedabscisicacidABAfactortargetnetworkexpressionnon-codingRNAsclassmanybiologicalprocessesplantsreceivedmuchattentionrecentyearsexploremolecularrolesconductedwidelytargetedmetabolometranscriptomelncRNAanalysesthreestagesyellowpinkdarkredresultsshowinvolvessubstantialchangesrapidaccumulationanthocyanins3-rutinoside3-O-galactoside3-O-glucosidemaincausecolorationalterationsprofiledrivenenzymesynthesisdecompositiondisintegrationbiosynthesiswellLncRNAscanformmodulesincorporatedstudyrevealslncRNA-mRNAmodulecomponentdifferentialwillmeditatespatio-temporalencodingenzymesthusdrivingIntegratedMetabolomeTranscriptomeNon-CodingRNAAnalysisRevealsPotentialMolecularMechanismsSweetCherryFruitRipeningPrunusaviumL

Similar Articles

Cited By