Mechanistic Insight into the Enantioselective Degradation of Esterase QeH to ()/()-Quizalofop-Ethyl with Molecular Dynamics Simulation Using a Residue-Specific Force Field.

Yu-Meng Zhu, Gui Yao, Song Shao, Xin-Yu Liu, Jun Xu, Chun Chen, Xing-Wang Zhang, Zhuo-Ran Huang, Cheng-Zhen Xu, Long Zhang, Xiao-Min Wu
Author Information
  1. Yu-Meng Zhu: Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
  2. Gui Yao: Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
  3. Song Shao: Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
  4. Xin-Yu Liu: Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
  5. Jun Xu: Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
  6. Chun Chen: Institute of Biomedicine, Jinan University, Guangzhou 510632, China.
  7. Xing-Wang Zhang: Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
  8. Zhuo-Ran Huang: Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
  9. Cheng-Zhen Xu: Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
  10. Long Zhang: Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
  11. Xiao-Min Wu: Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China. ORCID

Abstract

The enantioselective mechanism of the esterase QeH against the two enantiomers of quizalofop-ethyl (QE) has been primitively studied using computational and experimental approaches. However, it is still unclear how the esterase QeH adjusts its conformation to adapt to substrate binding and promote enzymrate interactions and catalytic dynamics were reproduced by performing independent molecular dynamics (MD) runs on the QeH-()/()-QE complexes with a newly developed residue-specific force field (RSFF2C). Our results indicated that the benzene ring of the ()-QE structure can simultaneously form anion-�� and cation-�� interactions with the side-chain group of Glu328 and Arg384 in the binding cavity of the QeH-()-QE complex, resulting in ()-QE being closer to its catalytic triplet system (Ser78-Lys81-Tyr189) with the distances measured for the hydroxyl oxygen atom of the catalytic Ser78 of QeH and the carbonyl carbon atom of ()-QE of 7.39 ��, compared to the 8.87 �� for (S)-QE, whereas the ()-QE structure can only form an anion-�� interaction with the side chain of Glu328 in the QeH-()-QE complex, being less close to its catalytic site. The computational alanine scanning mutation (CAS) calculations further demonstrated that the ��-�� stacking interaction between the indole ring of Trp351 and the benzene ring of ()/()-QE contributed a lot to the binding stability of the enzyme-substrate (QeH-()/()-QE). These results facilitate the understanding of their catalytic processes and provide new theoretical guidance for the directional design of other key enzymes for the initial degradation of aryloxyphenoxypropionate (AOPP) herbicides with higher catalytic efficiencies.

Keywords

References

  1. Environ Sci Technol. 2002 Jan 15;36(2):221-6 [PMID: 11827055]
  2. J Mol Graph Model. 1999 Feb;17(1):57-61 [PMID: 10660911]
  3. J Chem Theory Comput. 2019 May 14;15(5):2761-2773 [PMID: 30620582]
  4. Viruses. 2022 Jan 19;14(2): [PMID: 35215781]
  5. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  6. Braz J Microbiol. 2015 Jun 01;46(2):425-32 [PMID: 26273257]
  7. J Chem Theory Comput. 2008 Jan;4(1):116-22 [PMID: 26619985]
  8. Biomolecules. 2022 Nov 27;12(12): [PMID: 36551192]
  9. Environ Health Perspect. 2007 Oct;115(10):1479-81 [PMID: 17938739]
  10. J Biomol NMR. 1996 Dec;8(4):477-86 [PMID: 9008363]
  11. J Comput Aided Mol Des. 1990 Mar;4(1):1-105 [PMID: 2197373]
  12. Environ Sci Technol. 2006 Jan 1;40(1):16-23 [PMID: 16433329]
  13. World J Microbiol Biotechnol. 2018 Jul 12;34(8):117 [PMID: 30003364]
  14. J Hazard Mater. 2020 Oct 5;397:122777 [PMID: 32388456]
  15. Nature. 2021 Aug;596(7873):590-596 [PMID: 34293799]
  16. Fold Des. 1997;2(3):173-81 [PMID: 9218955]
  17. FEMS Microbiol Lett. 2011 Oct;323(2):196-203 [PMID: 22092720]
  18. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  19. Nature. 1999 Oct 28;401(6756):898-901 [PMID: 10553905]
  20. Bioresour Technol. 2015 Jun;186:114-121 [PMID: 25812814]
  21. J Agric Food Chem. 2008 Mar 26;56(6):2139-46 [PMID: 18318497]
  22. J Agric Food Chem. 2020 Jun 3;68(22):6092-6103 [PMID: 32392414]
  23. J Hazard Mater. 2023 Jun 5;451:131155 [PMID: 36893600]
  24. J Chem Inf Model. 2019 Sep 23;59(9):3871-3878 [PMID: 31442042]
  25. J Chem Inf Model. 2011 Jan 24;51(1):69-82 [PMID: 21117705]
  26. Molecules. 2022 Apr 11;27(8): [PMID: 35458645]
  27. J Agric Food Chem. 2021 Jan 13;69(1):88-100 [PMID: 33356208]
  28. J Am Chem Soc. 2002 Sep 25;124(38):11258-9 [PMID: 12236726]
  29. J Chem Theory Comput. 2022 Oct 11;18(10):6386-6395 [PMID: 36149394]
  30. J Agric Food Chem. 2011 Jun 8;59(11):6040-6 [PMID: 21534595]

Grants

  1. 2208085MC65/the Natural Science Foundation of Anhui Province
  2. 2023AH030077/the Outstanding Youth Project of Natural Science Research in Colleges and Universities of Anhui Province
  3. 31500594/National Natural Science Foundation of China
  4. Molecular Dynam-ics Studies on the Enantioselective Degradation of QeH to (R)/(S)-Quizalofop-ethyl/Anhui College Students' Innovation and Entrepreneurship Training Program

MeSH Term

Molecular Dynamics Simulation
Esterases
Stereoisomerism
Substrate Specificity
Catalytic Domain
Kinetics

Chemicals

Esterases

Word Cloud

Created with Highcharts 10.0.0-QEcatalyticQeHQeH-/bindingdynamicsringinteractionenantioselectivemechanismesterasecomputationalinteractionsmolecularresultsbenzenestructurecanformanion-��Glu328complexatom��degradationtwoenantiomersquizalofop-ethylQEprimitivelystudiedusingexperimentalapproachesHoweverstillunclearadjustsconformationadaptsubstratepromoteenzymratereproducedperformingindependentMDrunscomplexesnewlydevelopedresidue-specificforcefieldRSFF2Cindicatedsimultaneouslycation-��side-chaingroupArg384cavityresultingclosertripletsystemSer78-Lys81-Tyr189distancesmeasuredhydroxyloxygenSer78carbonylcarbon739compared887SwhereassidechainlessclosesitealaninescanningmutationCAScalculationsdemonstrated��-��stackingindoleTrp351contributedlotstabilityenzyme-substratefacilitateunderstandingprocessesprovidenewtheoreticalguidancedirectionaldesignkeyenzymesinitialaryloxyphenoxypropionateAOPPherbicideshigherefficienciesMechanisticInsightEnantioselectiveDegradationEsterase-Quizalofop-EthylMolecularDynamicsSimulationUsingResidue-SpecificForceFieldkineticscharacterizationinter-residuesimulationquizalofop���ethyl

Similar Articles

Cited By

No available data.