Anti-Coronavirus Activity of Chitosan-Stabilized Liposomal Nanocarriers Loaded with Natural Extracts from Bulgarian Flora.

Anna Gyurova, Viktoria Milkova, Ivan Iliev, Nevena Lazarova-Zdravkova, Viktor Rashev, Lora Simeonova, Neli Vilhelmova-Ilieva
Author Information
  1. Anna Gyurova: Institute of Physical Chemistry 'Acad. R. Kaischew', Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
  2. Viktoria Milkova: Institute of Physical Chemistry 'Acad. R. Kaischew', Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. ORCID
  3. Ivan Iliev: Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. ORCID
  4. Nevena Lazarova-Zdravkova: Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski, 1756 Sofia, Bulgaria. ORCID
  5. Viktor Rashev: Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria. ORCID
  6. Lora Simeonova: Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria. ORCID
  7. Neli Vilhelmova-Ilieva: Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria. ORCID

Abstract

Disease's severity, mortality rates, and common failures to achieve clinical improvement during the unprecedented COVID-19 pandemic exposed the emergency need for new antiviral therapeutics with higher efficacy and fewer adverse effects. This study explores the potential to encapsulate multi-component plant extracts in liposomes as optimized delivery systems and to verify if they exert inhibitory effects against human seasonal betacoronavirus OC43 (HCoV-OC43) in vitro. The selection of , , , , and L. plant extracts was based on their established pharmacological and antiviral properties. The physicochemical characterization of extract-loaded liposomes was conducted by DLS and electrokinetics. Encapsulated amounts of the extract were evaluated based on the total flavonoid content (TFC) and total polyphenol content (TPC) by colorimetric methods. The BALB 3T3 neutral red uptake (NRU) phototoxicity/cytotoxicity assay was used to estimate compounds' safety. Photo irritation factors (PIFs) of the liposomes containing extracts were <2 which assigned them as non-phototoxic substances. The antiviral capacities of liposomes containing medicinal plant extracts against HCoV-OC43 were measured by the cytopathic effect inhibition test in susceptible HCT-8 cells. The antiviral activity increased by several times compared to "naked" extracts' activity reported previously. extract showed 16 times higher inhibitory properties reaching a selectivity index (SI) of 58.96. Virucidal and virus-adsorption effects were investigated using the endpoint dilution method and ∆lgs comparison with infected and untreated controls. The results confirmed that nanoparticles do not directly affect the viral surface or cell membrane, but only serve as carriers of the active substances and the observed protection is due solely to the intracellular action of the extracts.

Keywords

References

  1. Biosci Biotechnol Biochem. 2002 Nov;66(11):2330-5 [PMID: 12506968]
  2. Food Chem. 2014 Aug 1;156:176-83 [PMID: 24629955]
  3. Food Chem. 2011 Nov 15;129(2):333-344 [PMID: 30634235]
  4. Int J Biol Macromol. 2016 Dec;93(Pt A):591-599 [PMID: 27620464]
  5. Int J Biol Macromol. 2023 Jan 1;224:871-880 [PMID: 36283561]
  6. J Acupunct Meridian Stud. 2012 Dec;5(6):310-8 [PMID: 23265083]
  7. Biomed Res Int. 2014;2014:434067 [PMID: 25126557]
  8. J Pharm Pharmacol. 2009 Dec;61(12):1609-16 [PMID: 19958582]
  9. Food Funct. 2012 Mar;3(3):246-54 [PMID: 22116575]
  10. Trends Food Sci Technol. 2020 Oct;104:219-234 [PMID: 32836826]
  11. Front Pharmacol. 2020 Mar 17;11:290 [PMID: 32256361]
  12. Eur J Pharm Sci. 2013 Jan 23;48(1-2):216-22 [PMID: 23159663]
  13. Altern Lab Anim. 2003 Mar-Apr;31(2):89-198 [PMID: 15612878]
  14. Nutrients. 2020 Mar 24;12(3): [PMID: 32213941]
  15. J Tradit Chin Med. 2013 Dec;33(6):810-4 [PMID: 24660616]
  16. Colloids Surf B Biointerfaces. 2014 Jun 1;118:117-25 [PMID: 24742953]
  17. Front Pharmacol. 2021 Nov 23;12:726199 [PMID: 34887750]
  18. Expert Opin Drug Deliv. 2016 Aug;13(8):1165-75 [PMID: 27139509]
  19. BMC Evol Biol. 2007 Jun 26;7:96 [PMID: 17594485]
  20. Plants (Basel). 2022 Jun 23;11(13): [PMID: 35807618]
  21. Int J Biol Macromol. 2024 Apr;265(Pt 1):130749 [PMID: 38467218]
  22. Biomacromolecules. 2008 Jan;9(1):396-402 [PMID: 18067258]
  23. Life (Basel). 2022 Jul 20;12(7): [PMID: 35888176]
  24. Mini Rev Med Chem. 2022;22(11):1476-1494 [PMID: 34579633]
  25. J Ayurveda Integr Med. 2022 Jan-Mar;13(1):100346 [PMID: 32782113]
  26. RSC Adv. 2022 May 25;12(25):15775-15786 [PMID: 35685696]
  27. Drug Deliv Transl Res. 2018 Feb;8(1):12-20 [PMID: 29063498]
  28. BMC Res Notes. 2019 Jan 3;12(1):3 [PMID: 30602390]
  29. Front Pharmacol. 2021 Apr 30;12:643119 [PMID: 33995049]
  30. J Ethnopharmacol. 2009 Mar 18;122(2):184-204 [PMID: 19162156]
  31. Pharmaceutics. 2022 Dec 01;14(12): [PMID: 36559173]
  32. Int J Biol Macromol. 2021 Jan 15;167:1176-1197 [PMID: 33197477]
  33. Biochim Biophys Acta. 2004 May 27;1663(1-2):97-107 [PMID: 15157612]
  34. Clin Pract. 2022 Feb 28;12(2):168-176 [PMID: 35314591]
  35. J Ethnopharmacol. 2021 Jun 28;274:114016 [PMID: 33716085]
  36. BMC Vet Res. 2014 Jan 16;10:24 [PMID: 24433341]
  37. Evid Based Complement Alternat Med. 2011;2011: [PMID: 20953431]
  38. Langmuir. 2016 Dec 13;32(49):13234-13243 [PMID: 27951697]
  39. Plants (Basel). 2022 Jul 08;11(14): [PMID: 35890443]
  40. J Nanosci Nanotechnol. 2006 Sep-Oct;6(9-10):3025-31 [PMID: 17048514]
  41. Antiviral Res. 2019 Apr;164:1-11 [PMID: 30711418]
  42. Food Res Int. 2020 Jul;133:109092 [PMID: 32466932]
  43. Polymers (Basel). 2021 Sep 24;13(19): [PMID: 34641071]
  44. Acta Pharm Sin B. 2015 Jul;5(4):310-5 [PMID: 26579460]
  45. BMC Complement Med Ther. 2021 Apr 7;21(1):112 [PMID: 33827515]
  46. Biomed Res Int. 2020 May 31;2020:3012198 [PMID: 32596292]
  47. Sci Rep. 2021 Jun 23;11(1):13178 [PMID: 34162964]
  48. J Int Med Res. 2004 Mar-Apr;32(2):132-40 [PMID: 15080016]
  49. Front Cell Infect Microbiol. 2021 Mar 17;11:643953 [PMID: 33816349]
  50. Biologia (Bratisl). 2022;77(4):1121-1134 [PMID: 35034970]
  51. Antioxidants (Basel). 2021 Jun 22;10(7): [PMID: 34206691]
  52. Biomacromolecules. 2007 Aug;8(8):2512-9 [PMID: 17658883]

Grants

  1. Grant of European Union-Next Generation EU: BG-RRP-2.004-0002, "BiOrgaMCT"/European Union: BG-RRP-2.004-0002

Word Cloud

Created with Highcharts 10.0.0extractsantiviralliposomeseffectsplantHCoV-OC43activityhigherinhibitorybasedpropertiesextracttotalcontentcontainingsubstancestimesviralnaturalDisease'sseveritymortalityratescommonfailuresachieveclinicalimprovementunprecedentedCOVID-19pandemicexposedemergencyneednewtherapeuticsefficacyfeweradversestudyexplorespotentialencapsulatemulti-componentoptimizeddeliverysystemsverifyexerthumanseasonalbetacoronavirusOC43vitroselectionLestablishedpharmacologicalphysicochemicalcharacterizationextract-loadedconductedDLSelectrokineticsEncapsulatedamountsevaluatedflavonoidTFCpolyphenolTPCcolorimetricmethodsBALB3T3neutralreduptakeNRUphototoxicity/cytotoxicityassayusedestimatecompounds'safetyPhotoirritationfactorsPIFs<2assignednon-phototoxiccapacitiesmedicinalmeasuredcytopathiceffectinhibitiontestsusceptibleHCT-8cellsincreasedseveralcompared"naked"extracts'reportedpreviouslyshowed16reachingselectivityindexSI5896Virucidalvirus-adsorptioninvestigatedusingendpointdilutionmethod∆lgscomparisoninfecteduntreatedcontrolsresultsconfirmednanoparticlesdirectlyaffectsurfacecellmembraneservecarriersactiveobservedprotectionduesolelyintracellularactionAnti-CoronavirusActivityChitosan-StabilizedLiposomalNanocarriersLoadedNaturalExtractsBulgarianFlorachitosancoronaviruscytotoxicitydrugreleaseencapsulationinhibitorsreplicationphototoxicity

Similar Articles

Cited By