Rhizosphere Microbiome Co-Occurrence Network Analysis across a Tomato Domestication Gradient.

Mary M Dixon, Antisar Afkairin, Daniel K Manter, Jorge Vivanco
Author Information
  1. Mary M Dixon: Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA.
  2. Antisar Afkairin: Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA. ORCID
  3. Daniel K Manter: United States Department of Agriculture-Agricultural Research Service, Soil Management and Sugar Beet Research, Fort Collins, CO 80526, USA. ORCID
  4. Jorge Vivanco: Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA.

Abstract

When plant-available phosphorus (P) is lost from a soil solution, it often accumulates in the soil as a pool of unavailable legacy P. To acquire legacy P, plants employ recovery strategies, such as forming associations with soil microbes. However, the degree to which plants rely on microbial associations for this purpose varies with crop domestication and subsequent breeding. Here, by generating microbial co-occurrence networks, we sought to explore rhizosphere bacterial interactions in low-P conditions and how they change with tomato domestication and breeding. We grew wild tomato, traditional tomato (developed circa 1900), and modern tomato (developed circa 2020) in high-P and low-P soil throughout their vegetative developmental stage. Co-occurrence network analysis revealed that as the tomatoes progressed along the stages of domestication, the rhizosphere microbiome increased in complexity in a P deficit. However, with the addition of P fertilizer, the wild tomato group became more complex, surpassing the complexity of traditional and modern tomato, suggesting a high degree of responsiveness in the rhizosphere microbiome to P fertilizer by wild tomato relatives. By illustrating these changing patterns of network complexity in the tomato rhizosphere microbiome, we can further understand how plant domestication and breeding have shaped plant-microbe interactions.

Keywords

References

  1. Sci Rep. 2024 Apr 30;14(1):9934 [PMID: 38689014]
  2. Nat Biotechnol. 2018 Oct 01;: [PMID: 30272678]
  3. Front Plant Sci. 2019 Dec 20;10:1606 [PMID: 31921253]
  4. Int J Mol Sci. 2021 Jun 22;22(13): [PMID: 34206311]
  5. Nat Commun. 2022 Jul 5;13(1):3867 [PMID: 35790741]
  6. Microorganisms. 2020 Nov 23;8(11): [PMID: 33238592]
  7. Trends Plant Sci. 2009 Jan;14(1):1-4 [PMID: 19056309]
  8. Cell Host Microbe. 2015 Mar 11;17(3):392-403 [PMID: 25732064]
  9. Microbiome. 2023 Mar 31;11(1):70 [PMID: 37004105]
  10. FEMS Microbiol Ecol. 2019 Sep 1;95(9): [PMID: 31386159]
  11. Plant Physiol. 2011 Jul;156(3):997-1005 [PMID: 21571668]
  12. Environ Res. 2024 Jun 15;251(Pt 2):118715 [PMID: 38490631]
  13. Plants (Basel). 2021 Sep 17;10(9): [PMID: 34579474]
  14. BMC Genomics. 2013 Nov 27;14:835 [PMID: 24279304]
  15. Front Plant Sci. 2017 Feb 13;8:132 [PMID: 28243246]
  16. Microbiome. 2019 Nov 7;7(1):146 [PMID: 31699148]
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066111 [PMID: 15697438]
  18. Front Microbiol. 2021 Oct 15;12:744094 [PMID: 34721342]
  19. Nat Biotechnol. 2020 Jun;38(6):685-688 [PMID: 32483366]
  20. Proc Natl Acad Sci U S A. 2004 May 25;101(21):7913-8 [PMID: 15148379]
  21. Sci Rep. 2014 Sep 02;4:6261 [PMID: 25179219]
  22. Nat Methods. 2022 Jul;19(7):845-853 [PMID: 35773532]
  23. Trends Plant Sci. 2012 Aug;17(8):478-86 [PMID: 22564542]
  24. Front Microbiol. 2020 Dec 18;11:604566 [PMID: 33391227]
  25. New Phytol. 2023 Aug;239(4):1368-1383 [PMID: 37306070]
  26. ISME J. 2017 Oct;11(10):2244-2257 [PMID: 28585939]
  27. Microorganisms. 2021 May 28;9(6): [PMID: 34071426]
  28. FEMS Microbiol Ecol. 2021 Jan 26;97(2): [PMID: 33332530]
  29. Plant Mol Biol. 2016 Apr;90(6):635-44 [PMID: 26085172]
  30. Appl Environ Microbiol. 2015 Oct;81(20):7281-9 [PMID: 26253682]
  31. Microb Ecol. 2020 Jul;80(1):169-180 [PMID: 32016609]
  32. Front Microbiol. 2021 Feb 04;12:610823 [PMID: 33613482]
  33. Sci Rep. 2019 Jun 26;9(1):9300 [PMID: 31243310]
  34. Appl Environ Microbiol. 2011 Oct;77(20):7345-54 [PMID: 21856827]
  35. Microbiome. 2018 Aug 16;6(1):143 [PMID: 30115122]
  36. Sci Rep. 2017 Jun 21;7(1):3940 [PMID: 28638057]
  37. FEMS Microbiol Ecol. 2009 Apr;68(1):1-13 [PMID: 19243436]
  38. Front Microbiol. 2022 Jun 13;13:824437 [PMID: 35770171]
  39. Sci Total Environ. 2021 Jun 10;772:144825 [PMID: 33581524]
  40. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53 [PMID: 23576752]
  41. ISME J. 2021 Aug;15(8):2474-2489 [PMID: 33712698]
  42. Ecol Lett. 2016 Aug;19(8):926-36 [PMID: 27264635]
  43. BMC Genomics. 2015 Apr 01;16:257 [PMID: 25880392]
  44. Microorganisms. 2024 Feb 08;12(2): [PMID: 38399758]

Word Cloud

Created with Highcharts 10.0.0tomatoPdomesticationsoilrhizospherebreedingwildnetworkmicrobiomecomplexityphosphoruslegacyplantsassociationsHoweverdegreemicrobialcropco-occurrenceinteractionslow-Ptraditionaldevelopedcircamodernfertilizerplant-availablelostsolutionoftenaccumulatespoolunavailableacquireemployrecoverystrategiesformingmicrobesrelypurposevariessubsequentgeneratingnetworkssoughtexplorebacterialconditionschangegrew19002020high-PthroughoutvegetativedevelopmentalstageCo-occurrenceanalysisrevealedtomatoesprogressedalongstagesincreaseddeficitadditiongroupbecamecomplexsurpassingsuggestinghighresponsivenessrelativesillustratingchangingpatternscanunderstandplantshapedplant-microbeRhizosphereMicrobiomeCo-OccurrenceNetworkAnalysisacrossTomatoDomesticationGradient

Similar Articles

Cited By