The Potential of Phage Treatment to Inactivate Planktonic and Biofilm-Forming .

In��s Martinho, M��rcia Braz, Jo��o Duarte, Ana Br��s, Vanessa Oliveira, Newton C M Gomes, Carla Pereira, Adelaide Almeida
Author Information
  1. In��s Martinho: Department of Biology and CESAM, University of Aveiro, Campus Universit��rio de Santiago, 3810-193 Aveiro, Portugal.
  2. M��rcia Braz: Department of Biology and CESAM, University of Aveiro, Campus Universit��rio de Santiago, 3810-193 Aveiro, Portugal. ORCID
  3. Jo��o Duarte: Department of Biology and CESAM, University of Aveiro, Campus Universit��rio de Santiago, 3810-193 Aveiro, Portugal.
  4. Ana Br��s: Department of Biology and CESAM, University of Aveiro, Campus Universit��rio de Santiago, 3810-193 Aveiro, Portugal.
  5. Vanessa Oliveira: Department of Biology and CESAM, University of Aveiro, Campus Universit��rio de Santiago, 3810-193 Aveiro, Portugal. ORCID
  6. Newton C M Gomes: Department of Biology and CESAM, University of Aveiro, Campus Universit��rio de Santiago, 3810-193 Aveiro, Portugal. ORCID
  7. Carla Pereira: Department of Biology and CESAM, University of Aveiro, Campus Universit��rio de Santiago, 3810-193 Aveiro, Portugal. ORCID
  8. Adelaide Almeida: Department of Biology and CESAM, University of Aveiro, Campus Universit��rio de Santiago, 3810-193 Aveiro, Portugal. ORCID

Abstract

is a common cause of hospital-acquired infections and exhibits a strong resistance to antibiotics. An alternative treatment option for bacterial infections is the use of bacteriophages (or phages). In this study, two distinct phages, VB_PaD_phPA-G (phPA-G) and VB_PaN_phPA-Intesti (phPA-Intesti), were used as single suspensions or in a phage cocktail to inactivate the planktonic cells and biofilms of . Preliminary experiments in culture medium showed that phage phPA-Intesti (reductions of 4.5-4.9 log CFU/mL) outperformed phPA-G (reductions of 0.6-2.6 log CFU/mL) and the phage cocktail (reduction of 4.2 log CFU/mL). Phage phPA-Intesti caused a maximum reduction of 5.5 log CFU/cm in the biofilm in urine after 4 h of incubation. The combination of phage phPA-Intesti and ciprofloxacin did not improve the efficacy of bacterial inactivation nor reduce the development of resistant mutants. However, the development of resistant bacteria was lower in the combined treatment with the phage and the antibiotic compared to treatment with the antibiotic alone. This phage lacks known toxins, virulence, antibiotic resistance, and integrase genes. Overall, the results suggest that the use of phage phPA-Intesti could be a potential approach to control urinary tract infections (UTIs), namely those caused by biofilm-producing and multidrug-resistant strains of .

Keywords

References

  1. Bioinformatics. 2015 Oct 15;31(20):3350-2 [PMID: 26099265]
  2. NAR Genom Bioinform. 2021 Aug 05;3(3):lqab067 [PMID: 34377978]
  3. PLoS One. 2022 Feb 3;17(2):e0263522 [PMID: 35113972]
  4. Pathogens. 2020 Oct 11;9(10): [PMID: 33050639]
  5. Future Microbiol. 2022 Jan;17:111-141 [PMID: 34989245]
  6. J Clin Lab Anal. 2022 Sep;36(9):e24655 [PMID: 35949048]
  7. Lancet. 2001 Jul 14;358(9276):135-8 [PMID: 11463434]
  8. PLoS One. 2017 Oct 26;12(10):e0185056 [PMID: 29073143]
  9. J Infect Dis. 2010 Apr 1;201(7):1096-104 [PMID: 20196657]
  10. ISME J. 2016 Dec;10(12):2854-2866 [PMID: 27258950]
  11. Viruses. 2019 Jun 18;11(6): [PMID: 31216787]
  12. Bacteriophage. 2011 Mar;1(2):111-114 [PMID: 22334867]
  13. Antimicrob Agents Chemother. 2018 May 25;62(6): [PMID: 29555626]
  14. Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4629-34 [PMID: 19255432]
  15. Cell Rep. 2021 May 25;35(8):109172 [PMID: 34038739]
  16. Microb Biotechnol. 2014 Sep;7(5):401-13 [PMID: 24841213]
  17. Eur J Pharm Biopharm. 2021 Jan;158:166-171 [PMID: 33253892]
  18. Antimicrob Agents Chemother. 2010 Jan;54(1):397-404 [PMID: 19822702]
  19. Viruses. 2019 Nov 23;11(12): [PMID: 31771160]
  20. mBio. 2020 Aug 4;11(4): [PMID: 32753497]
  21. Trends Microbiol. 2011 Aug;19(8):419-26 [PMID: 21664819]
  22. J Pediatric Infect Dis Soc. 2018 Aug 17;7(3):253-256 [PMID: 28992111]
  23. Food Microbiol. 2017 Feb;61:102-112 [PMID: 27697159]
  24. Nat Biotechnol. 2021 May;39(5):578-585 [PMID: 33349699]
  25. J Med Microbiol. 2011 Nov;60(Pt 11):1697-1700 [PMID: 21737541]
  26. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  27. J Infect Chemother. 2005 Oct;11(5):211-9 [PMID: 16258815]
  28. Virol J. 2012 Jan 10;9:9 [PMID: 22234269]
  29. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11207-11216 [PMID: 32424102]
  30. J Appl Microbiol. 2016 Aug;121(2):309-19 [PMID: 26811181]
  31. AAPS J. 2019 Apr 4;21(3):49 [PMID: 30949776]
  32. Antibiotics (Basel). 2020 Jun 04;9(6): [PMID: 32512805]
  33. Curr Res Immunol. 2023 Mar 28;4:100057 [PMID: 37025390]
  34. Food Microbiol. 2019 Feb;77:52-60 [PMID: 30297056]
  35. Microbiol Spectr. 2023 Jun 15;11(3):e0463622 [PMID: 37125933]
  36. Microb Drug Resist. 2021 Jan;27(1):25-35 [PMID: 32543337]
  37. Antimicrob Agents Chemother. 2015 Feb;59(2):1127-37 [PMID: 25487795]
  38. Microbiol Res. 2018 Jul - Aug;212-213:38-58 [PMID: 29853167]
  39. Virus Res. 2016 Jan 4;211:199-208 [PMID: 26541317]
  40. Adv Appl Microbiol. 2010;70:217-48 [PMID: 20359459]
  41. Cell Host Microbe. 2019 Feb 13;25(2):219-232 [PMID: 30763536]
  42. Ann Clin Microbiol Antimicrob. 2020 Sep 30;19(1):45 [PMID: 32998720]
  43. PLoS One. 2015 May 21;10(5):e0127603 [PMID: 25996839]
  44. Viruses. 2018 Apr 10;10(4): [PMID: 29642590]
  45. Virus Res. 2017 Jan 2;227:171-182 [PMID: 27756632]
  46. Front Microbiol. 2018 Aug 07;9:1832 [PMID: 30131795]
  47. Eur J Clin Microbiol Infect Dis. 2012 Nov;31(11):3241-9 [PMID: 22777594]
  48. Biochemistry. 2014 Mar 18;53(10):1565-74 [PMID: 24576155]
  49. Front Microbiol. 2019 Nov 28;10:2772 [PMID: 31849908]
  50. Appl Microbiol Biotechnol. 2020 Feb;104(3):1319-1330 [PMID: 31853568]
  51. Curr Opin Microbiol. 2001 Oct;4(5):500-8 [PMID: 11587924]
  52. AMB Express. 2023 Jul 26;13(1):79 [PMID: 37495819]
  53. Viruses. 2019 Apr 01;11(4): [PMID: 30939832]
  54. Sci Rep. 2016 May 26;6:26717 [PMID: 27225966]
  55. Arch Virol. 2020 Jun;165(6):1289-1297 [PMID: 32246283]
  56. Phage (New Rochelle). 2021 Dec 1;2(4):183-193 [PMID: 36159890]
  57. Microorganisms. 2024 Feb 10;12(2): [PMID: 38399770]
  58. Drug Resist Updat. 2019 May;44:100640 [PMID: 31492517]
  59. Microorganisms. 2021 Feb 25;9(3): [PMID: 33668889]
  60. Pharmaceuticals (Basel). 2021 Nov 15;14(11): [PMID: 34832944]
  61. Pathog Dis. 2019 Mar 1;77(2): [PMID: 30821815]
  62. Nat Biotechnol. 2004 Jan;22(1):31-6 [PMID: 14704699]
  63. Int J Antimicrob Agents. 2019 Apr;53(4):371-382 [PMID: 30472287]
  64. Pathogens. 2024 Feb 05;13(2): [PMID: 38392883]
  65. Int J Pharm. 2024 Mar 5;652:123853 [PMID: 38280500]
  66. Antibiotics (Basel). 2021 Jun 12;10(6): [PMID: 34204770]
  67. J Bacteriol. 2001 Dec;183(23):6746-51 [PMID: 11698361]
  68. Drug Resist Updat. 2000 Aug;3(4):247-255 [PMID: 11498392]
  69. Antibiotics (Basel). 2019 Jul 25;8(3): [PMID: 31349628]
  70. PLoS Pathog. 2009 Mar;5(3):e1000354 [PMID: 19325879]
  71. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  72. Microorganisms. 2019 Aug 23;7(9): [PMID: 31450735]
  73. Res Microbiol. 2013 Jan;164(1):55-60 [PMID: 23000091]
  74. Viruses. 2019 Mar 11;11(3): [PMID: 30862096]
  75. Appl Environ Microbiol. 2014 Sep;80(17):5340-8 [PMID: 24951790]
  76. Sci Rep. 2021 Sep 29;11(1):19393 [PMID: 34588479]
  77. Int J Antimicrob Agents. 2015 Aug;46(2):196-200 [PMID: 26100212]
  78. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  79. Appl Environ Microbiol. 2012 Feb;78(3):744-51 [PMID: 22113912]
  80. Biologicals. 2020 Jan;63:89-96 [PMID: 31685418]
  81. Nat Commun. 2022 Jul 22;13(1):4239 [PMID: 35869081]
  82. Microorganisms. 2018 Dec 05;6(4): [PMID: 30563133]
  83. Arch Immunol Ther Exp (Warsz). 1999;47(5):267-74 [PMID: 10604231]
  84. Virulence. 2013 Feb 15;4(2):185-91 [PMID: 23302792]
  85. J Microbiol Methods. 2001 Mar 1;44(2):121-9 [PMID: 11165341]
  86. Front Cell Infect Microbiol. 2019 Feb 18;9:22 [PMID: 30834237]
  87. PLoS Comput Biol. 2022 May 10;18(5):e1010125 [PMID: 35536864]
  88. Microb Biotechnol. 2016 Jan;9(1):61-74 [PMID: 26347362]
  89. PLoS One. 2017 Jan 11;12(1):e0168615 [PMID: 28076361]
  90. Curr Pharm Biotechnol. 2010 Jan;11(1):28-47 [PMID: 20214606]
  91. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  92. Int J Pharm. 2021 Mar 1;596:120200 [PMID: 33486032]
  93. Drugs. 2021 Dec;81(18):2117-2131 [PMID: 34743315]
  94. Genetika. 2011 Jul;47(7):900-4 [PMID: 21938953]
  95. Bacteriophage. 2016 Jan 5;6(1):e1096995 [PMID: 27144083]
  96. Pharmaceuticals (Basel). 2022 Feb 22;15(3): [PMID: 35337066]
  97. Microorganisms. 2019 Mar 31;7(4): [PMID: 30935094]
  98. Front Microbiol. 2022 Aug 26;13:955286 [PMID: 36090087]
  99. Future Microbiol. 2013 Jun;8(6):769-83 [PMID: 23701332]
  100. Nat Med. 2019 May;25(5):730-733 [PMID: 31068712]
  101. PLoS Pathog. 2015 Jun 11;11(6):e1004847 [PMID: 26066799]
  102. Environ Microbiol Rep. 2013 Dec;5(6):778-86 [PMID: 24249286]
  103. Lancet Infect Dis. 2019 Jan;19(1):35-45 [PMID: 30292481]
  104. Nature. 2015 Jan 22;517(7535):455-9 [PMID: 25561178]
  105. Antibiotics (Basel). 2024 Feb 19;13(2): [PMID: 38391581]
  106. Microbiol Res. 2016 Oct;191:51-80 [PMID: 27524653]
  107. Genes Dis. 2019 Apr 17;6(2):109-119 [PMID: 31194018]
  108. Virus Res. 2016 Jul 15;220:179-92 [PMID: 27126773]
  109. Int J Mol Sci. 2022 Oct 12;23(20): [PMID: 36292999]
  110. Front Microbiol. 2021 Apr 22;12:602902 [PMID: 33967969]
  111. Curr Opin Microbiol. 2017 Oct;39:48-56 [PMID: 28964986]
  112. ISME Commun. 2022 Aug 19;2(1):75 [PMID: 37938681]
  113. Int J Mol Sci. 2019 Jul 12;20(14): [PMID: 31336824]
  114. Antimicrob Agents Chemother. 2001 Mar;45(3):649-59 [PMID: 11181338]

Word Cloud

Created with Highcharts 10.0.0phagephPA-Intestiinfectionslogtreatment4CFU/mLantibioticresistancebacterialusephagesphPA-GcocktailreductionsreductionPhagecaused5biofilmdevelopmentresistantbacteriaurinarytractcommoncausehospital-acquiredexhibitsstrongantibioticsalternativeoptionbacteriophagesstudytwodistinctVB_PaD_phPA-GVB_PaN_phPA-IntestiusedsinglesuspensionsinactivateplanktoniccellsbiofilmsPreliminaryexperimentsculturemediumshowed5-49outperformed06-262maximumCFU/cmurinehincubationcombinationciprofloxacinimproveefficacyinactivationreducemutantsHoweverlowercombinedcomparedalonelacksknowntoxinsvirulenceintegrasegenesOverallresultssuggestpotentialapproachcontrolUTIsnamelybiofilm-producingmultidrug-resistantstrainsPotentialTreatmentInactivatePlanktonicBiofilm-FormingPseudomonasaeruginosaantibiotic-resistanttherapy

Similar Articles

Cited By