Biosensing Technologies for Detecting in Environmental Samples: A Systematic Review.

Giuseppe Andrea Screpis, Andrea Aleo, Natalia Privitera, Giuseppe Emanuele Capuano, Roberta Farina, Domenico Corso, Sebania Libertino, Maria Anna Coniglio
Author Information
  1. Giuseppe Andrea Screpis: Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy. ORCID
  2. Andrea Aleo: Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
  3. Natalia Privitera: Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
  4. Giuseppe Emanuele Capuano: Institute for Microelectronics and Microsystems (CNR-IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy. ORCID
  5. Roberta Farina: Institute for Microelectronics and Microsystems (CNR-IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy. ORCID
  6. Domenico Corso: Institute for Microelectronics and Microsystems (CNR-IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy. ORCID
  7. Sebania Libertino: Institute for Microelectronics and Microsystems (CNR-IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy. ORCID
  8. Maria Anna Coniglio: Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy. ORCID

Abstract

The detection of in environmental samples, such as water, is crucial for public health monitoring and outbreak prevention. Although effective, traditional detection methods, including culture-based techniques and polymerase chain reaction, have limitations such as long processing times, trained operators, and the need for specialized laboratory equipment. Biosensing technologies offer a promising alternative due to their rapid, sensitive, cost-effectiveness, and on-site detection capabilities. To summarize the current advancements in biosensor development for detecting in environmental samples, we used '' AND 'biosensors' NEAR 'environmental samples' OR 'water' as keywords searching through the most relevant biomedical databases for research articles. After removing duplicates and inadequate articles from the n.1268 records identified using the PRISMA methodology exclusion criteria, we selected n.65 full-text articles which suited the inclusion criteria. Different results between the studies describing the current biosensing techniques, including optical, electrochemical, magnetic, and mass-sensitive sensors were observed. For each biosensing technique, sensitivity, specificity, and detection limits were evaluated. Furthermore, the integration of nanomaterials, microfluidics, and portable devices in biosensor systems' design were discussed, highlighting their role in enhancing detection performance. The potential challenges and future directions in the field of biosensing were also addressed, providing insights into the feasibility of implementing these technologies in routine environmental monitoring. Undoubtedly, biosensors can play a crucial role in the early detection and management of infections and outbreaks, ultimately protecting public health and safety.

Keywords

References

  1. Biosensors (Basel). 2020 Aug 20;10(9): [PMID: 32825468]
  2. Iran J Microbiol. 2022 Dec;14(6):802-812 [PMID: 36721447]
  3. Anal Chem. 2017 Jul 18;89(14):7802-7807 [PMID: 28682593]
  4. Talanta. 2020 Sep 1;217:121061 [PMID: 32498831]
  5. Biosensors (Basel). 2022 Feb 09;12(2): [PMID: 35200365]
  6. Microorganisms. 2022 Apr 21;10(5): [PMID: 35630315]
  7. J AOAC Int. 2021 Aug 20;104(4):1135-1147 [PMID: 33484265]
  8. Microorganisms. 2024 May 10;12(5): [PMID: 38792790]
  9. J Clin Med. 2022 Oct 18;11(20): [PMID: 36294446]
  10. Appl Environ Microbiol. 2006 Apr;72(4):2801-8 [PMID: 16597985]
  11. Talanta. 2018 Nov 1;189:324-331 [PMID: 30086926]
  12. Biosens Bioelectron. 2022 May 1;203:113993 [PMID: 35114471]
  13. Sci Rep. 2017 Jun 8;7(1):3092 [PMID: 28596545]
  14. J Immunol Methods. 1999 Jun 24;226(1-2):119-28 [PMID: 10410977]
  15. Biomed Microdevices. 2023 Aug 29;25(3):34 [PMID: 37642743]
  16. ACS Omega. 2021 Jan 06;6(2):1299-1308 [PMID: 33490789]
  17. Anal Bioanal Chem. 2015 Jul;407(18):5541-5 [PMID: 25935681]
  18. Talanta. 2014 Jan;118:224-30 [PMID: 24274292]
  19. Sci Total Environ. 2021 Jun 20;774:145142 [PMID: 33610980]
  20. Biosens Bioelectron. 2014 Feb 15;52:129-35 [PMID: 24035857]
  21. Int J Biol Macromol. 2019 May 1;128:692-699 [PMID: 30685302]
  22. Anal Chim Acta. 2015 Aug 5;887:51-58 [PMID: 26320785]
  23. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  24. Lab Chip. 2015 Mar 21;15(6):1609-18 [PMID: 25659351]
  25. Sensors (Basel). 2018 Aug 14;18(8): [PMID: 30110899]
  26. Anal Chem. 2012 Apr 17;84(8):3485-8 [PMID: 22424137]
  27. Microorganisms. 2024 May 06;12(5): [PMID: 38792769]
  28. Microorganisms. 2021 Mar 11;9(3): [PMID: 33799845]
  29. Water Res. 2016 Apr 15;93:276-288 [PMID: 26928563]
  30. Biointerphases. 2016 Mar 22;11(1):019301 [PMID: 26903310]
  31. Biotechnol Adv. 2010 Mar-Apr;28(2):232-54 [PMID: 20006978]
  32. Biosens Bioelectron. 2017 Jun 15;92:162-170 [PMID: 28213329]
  33. Molecules. 2024 Jun 26;29(13): [PMID: 38998981]
  34. Sci Rep. 2020 Jun 4;10(1):9145 [PMID: 32499557]
  35. Eur J Clin Microbiol Infect Dis. 2021 Jul;40(7):1419-1426 [PMID: 33527200]
  36. Appl Environ Microbiol. 2005 Jul;71(7):4086-96 [PMID: 16000824]
  37. Biomed Microdevices. 2012 Jun;14(3):613-24 [PMID: 22391878]
  38. Talanta. 2012 Aug 30;98:112-7 [PMID: 22939135]
  39. Int J Environ Res Public Health. 2018 Jul 27;15(8): [PMID: 30060459]
  40. ACS Infect Dis. 2021 Apr 9;7(4):695-720 [PMID: 33733747]
  41. Biosens Bioelectron. 2003 Dec 15;19(4):289-96 [PMID: 14615085]
  42. Int J Environ Res Public Health. 2021 Aug 13;18(16): [PMID: 34444305]
  43. ACS Sens. 2022 Jan 28;7(1):131-141 [PMID: 34936330]
  44. Front Microbiol. 2019 Jun 26;10:1403 [PMID: 31293545]
  45. Biotechnol Bioeng. 2012 Jun;109(6):1471-8 [PMID: 22234602]
  46. Talanta. 2010 Aug 15;82(3):904-11 [PMID: 20678644]
  47. Talanta. 2020 Aug 1;215:120904 [PMID: 32312449]
  48. Sensors (Basel). 2024 Jun 17;24(12): [PMID: 38931704]
  49. Diagnostics (Basel). 2023 Jan 12;13(2): [PMID: 36673091]
  50. Biosens Bioelectron. 2016 Apr 15;78:37-44 [PMID: 26590701]
  51. Biosens Bioelectron. 2003 May;18(5-6):605-11 [PMID: 12706569]
  52. Enzyme Microb Technol. 2017 Oct;105:64-76 [PMID: 28756863]
  53. BMC Microbiol. 2013 Apr 22;13:88 [PMID: 23601924]
  54. Appl Microbiol Biotechnol. 2011 Oct;92(1):179-87 [PMID: 21847513]
  55. Biosens Bioelectron. 2009 Apr 15;24(8):2390-6 [PMID: 19167878]
  56. J Hosp Infect. 2023 Aug;138:74-80 [PMID: 37353007]
  57. J Water Health. 2021 Jun;19(3):468-477 [PMID: 34152299]
  58. Rev Sci Instrum. 2014 Sep;85(9):093107 [PMID: 25273707]
  59. Biosens Bioelectron. 2000;15(11-12):641-9 [PMID: 11213225]
  60. Pak J Biol Sci. 2007 Nov 15;10(22):4015-21 [PMID: 19090273]
  61. BMC Microbiol. 2022 Jan 8;22(1):20 [PMID: 34996350]
  62. Sensors (Basel). 2024 Jul 11;24(14): [PMID: 39065899]
  63. J Oral Biol Craniofac Res. 2016 May-Aug;6(2):153-9 [PMID: 27195214]
  64. BMC Infect Dis. 2018 Dec 27;18(1):696 [PMID: 30587144]
  65. Anal Chem. 2019 Oct 15;91(20):12661-12669 [PMID: 31525880]
  66. Angew Chem Int Ed Engl. 2021 Feb 23;60(9):4782-4788 [PMID: 33188548]
  67. Biochimie. 2023 Dec;215:42-49 [PMID: 37683994]
  68. Int J Biol Macromol. 2018 Mar;108:69-80 [PMID: 29180051]
  69. Biosens Bioelectron. 2012 Feb 15;32(1):133-40 [PMID: 22196877]
  70. ACS Omega. 2022 Sep 06;7(37):33349-33357 [PMID: 36157789]
  71. Micromachines (Basel). 2022 Jul 08;13(7): [PMID: 35888900]
  72. J Appl Microbiol. 2018 Nov;125(5):1534-1540 [PMID: 30027603]
  73. Chem Rev. 2019 Jan 9;119(1):700-726 [PMID: 30557008]
  74. Int J Biol Macromol. 2019 Jan;121:1295-1307 [PMID: 30219511]
  75. Analyst. 2021 Jun 7;146(11):3568-3577 [PMID: 33913455]
  76. Biosens Bioelectron. 2018 Feb 15;100:49-55 [PMID: 28863324]
  77. Biosens Bioelectron. 2013 Mar 15;41:354-8 [PMID: 23021840]
  78. Front Microbiol. 2022 Jun 13;13:900936 [PMID: 35770167]
  79. Biosens Bioelectron. 2005 Mar 15;20(9):1847-50 [PMID: 15681203]
  80. Microorganisms. 2023 Jul 13;11(7): [PMID: 37512966]
  81. Sensors (Basel). 2017 Oct 10;17(10): [PMID: 28994727]

Word Cloud

Created with Highcharts 10.0.0detectionenvironmentalbiosensingsamplestechnologiesarticlescrucialpublichealthmonitoringincludingtechniquesBiosensingcurrentbiosensorncriteriarolewateroutbreakpreventionAlthougheffectivetraditionalmethodsculture-basedpolymerasechainreactionlimitationslongprocessingtimestrainedoperatorsneedspecializedlaboratoryequipmentofferpromisingalternativeduerapidsensitivecost-effectivenesson-sitecapabilitiessummarizeadvancementsdevelopmentdetectingused''AND'biosensors'NEAR'environmentalsamples'OR'water'keywordssearchingrelevantbiomedicaldatabasesresearchremovingduplicatesinadequate1268recordsidentifiedusingPRISMAmethodologyexclusionselected65full-textsuitedinclusionDifferentresultsstudiesdescribingopticalelectrochemicalmagneticmass-sensitivesensorsobservedtechniquesensitivityspecificitylimitsevaluatedFurthermoreintegrationnanomaterialsmicrofluidicsportabledevicessystems'designdiscussedhighlightingenhancingperformancepotentialchallengesfuturedirectionsfieldalsoaddressedprovidinginsightsfeasibilityimplementingroutineUndoubtedlybiosensorscanplayearlymanagementinfectionsoutbreaksultimatelyprotectingsafetyTechnologiesDetectingEnvironmentalSamples:SystematicReviewLegionellasystematicreview

Similar Articles

Cited By