Modified oxymatrine as novel therapeutic inhibitors against Monkeypox and Marburg virus through computational drug design approaches.

Md Rezaul Islam, Suvro Biswas, Ummy Amena, Miadur Rahman, Shirmin Islam, Md Ariful Islam, Md Abu Saleh, Hesham M Hassan, Ahmed Al-Emam, Magdi E A Zaki
Author Information
  1. Md Rezaul Islam: Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Ashulia, Dhaka, Bangladesh. ORCID
  2. Suvro Biswas: Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh.
  3. Ummy Amena: Department of Pharmacy, Faculty of Life & Earth Sciences, Jagannath University, Dhaka, Bangladesh.
  4. Miadur Rahman: Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh.
  5. Shirmin Islam: Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh.
  6. Md Ariful Islam: Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh.
  7. Md Abu Saleh: Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh. ORCID
  8. Hesham M Hassan: Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia.
  9. Ahmed Al-Emam: Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia.
  10. Magdi E A Zaki: Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University Riyadh, Riyadh, Saudi Arabia.

Abstract

Global impact of viral diseases specially Monkeypox (mpox) and Marburg virus, emphasizing the urgent need for effective drug interventions. Oxymatrine is an alkaloid which has been selected and modified using various functional groups to enhance its efficacy. The modifications were evaluated using various computatioanal analysis such as pass prediction, molecular docking, ADMET, and molecular dynamic simulation. Mpox and Marburg virus were chosen as target diseases based on their maximum pass prediction spectrum against viral disease. After that, molecular docking, dynamic simulation, DFT, calculation and ADMET prediction were determined. The main objective of this study was to enhance the efficacy of oxymatrine derivatives through functional group modifications and computational analyses to develop effective drug candidates against mpox and Marburg viruses. The calculated binding affinities indicated strong interactions against both mpox virus and Marburg virus. After that, the molecular dynamic simulation was conducted at 100���ns, which confirmed the stability of the binding interactions between the modified oxymatrine derivatives and target proteins. Then, the modified oxymatrine derivatives conducted theoretical ADMET profiling, which demonstrated their potential for effective drug development. Moreover, HOMO-LUMO calculation was performed to understand the chemical reactivity and physicochemical properties of compounds. This computational analysis indicated that modified oxymatrine derivatives for the treatment of mpox and Marburg virus suggested effective drug candidates based on their binding affinity, drug-like properties, stability and chemical reactivity. However, further experimental validation is necessary to confirm their clinical value and efficacy as therapeutic candidates.

Keywords

References

  1. Curr Top Med Chem. 2018;18(20):1755-1768 [PMID: 30360721]
  2. J Microbiol Immunol Infect. 2022 Oct;55(5):787-794 [PMID: 35970757]
  3. Arab J Chem. 2021 Sep;14(9):103315 [PMID: 34909064]
  4. mBio. 2021 Aug 31;12(4):e0097221 [PMID: 34225493]
  5. Brief Bioinform. 2021 Mar 22;22(2):1402-1414 [PMID: 33517367]
  6. MMWR Morb Mortal Wkly Rep. 2018 Mar 16;67(10):306-310 [PMID: 29543790]
  7. Molecules. 2021 Apr 12;26(8): [PMID: 33921289]
  8. Antiviral Res. 2017 May;141:133-139 [PMID: 28115196]
  9. Brief Bioinform. 2021 Mar 22;22(2):1476-1498 [PMID: 33623995]
  10. Int J Infect Dis. 2020 Oct;99:233-242 [PMID: 32758690]
  11. Front Microbiol. 2018 Jul 03;9:1367 [PMID: 30018597]
  12. Biology (Basel). 2021 Jun 26;10(7): [PMID: 34206970]
  13. Front Bioinform. 2021 Oct 05;1:717141 [PMID: 36303755]
  14. Infez Med. 2020 Sep 1;28(3):332-345 [PMID: 32920568]
  15. Expert Opin Drug Discov. 2012 Feb;7(2):99-107 [PMID: 22468912]
  16. Molecules. 2015 Jul 22;20(7):13384-421 [PMID: 26205061]
  17. Front Mol Biosci. 2022 Jan 27;8:791642 [PMID: 35187069]
  18. Health Sci Rep. 2022 Nov 29;6(1):e971 [PMID: 36467750]
  19. Int J Mol Sci. 2019 Dec 11;20(24): [PMID: 31835852]
  20. Biosci Trends. 2022 Sep 17;16(4):312-316 [PMID: 35908851]
  21. J Med Chem. 2015 May 14;58(9):4066-72 [PMID: 25860834]
  22. Arab J Chem. 2022 Feb;15(2):103600 [PMID: 34909068]
  23. Expert Rev Clin Pharmacol. 2021 Oct;14(10):1305-1315 [PMID: 34301158]
  24. Curr Opin Biotechnol. 2007 Dec;18(6):478-88 [PMID: 18035532]
  25. J Biomol Struct Dyn. 2022 Feb;40(2):860-874 [PMID: 32938313]
  26. Sci Rep. 2021 Jul 29;11(1):15431 [PMID: 34326355]
  27. J Virol. 2014 May;88(10):5859-63 [PMID: 24574400]
  28. J Chem Inf Model. 2021 Jul 26;61(7):3314-3322 [PMID: 34213323]
  29. Sci Rep. 2017 Mar 03;7:42717 [PMID: 28256516]
  30. World J Pediatr. 2023 Mar;19(3):224-230 [PMID: 36214966]
  31. Acta Crystallogr D Biol Crystallogr. 1998 Nov 1;54(Pt 6 Pt 1):1078-84 [PMID: 10089483]
  32. J Biomol Struct Dyn. 2023 Nov;41(19):10070-10080 [PMID: 36469727]
  33. J Chem Phys. 2014 May 7;140(17):174501 [PMID: 24811640]
  34. Pharmacol Res. 2020 Jan;151:104541 [PMID: 31733326]
  35. PLoS One. 2022 Aug 23;17(8):e0273341 [PMID: 35998194]
  36. J Biomol Struct Dyn. 2021 Jun;39(9):3213-3224 [PMID: 32340562]
  37. Clin Epidemiol Glob Health. 2022 Jan-Feb;13:100920 [PMID: 34901523]
  38. Acta Crystallogr F Struct Biol Commun. 2022 Oct 1;78(Pt 10):371-377 [PMID: 36189721]
  39. Int J Mol Sci. 2018 Mar 23;19(4): [PMID: 29570670]
  40. Nat Rev Drug Discov. 2015 Jul;14(7):475-86 [PMID: 26091267]
  41. Curr Protein Pept Sci. 2014;15(5):456-76 [PMID: 24678666]
  42. Sci Rep. 2023 Aug 17;13(1):13398 [PMID: 37592012]
  43. J Comput Chem. 2015 May 15;36(13):996-1007 [PMID: 25824339]
  44. Infect Med (Beijing). 2022 Jun;1(2):124-134 [PMID: 38013719]
  45. Curr Pharm Des. 2010 May;16(15):1703-17 [PMID: 20222853]
  46. Methods Mol Biol. 2018;1685:43-67 [PMID: 29086303]

MeSH Term

Alkaloids
Antiviral Agents
Drug Design
Marburgvirus
Matrines
Molecular Docking Simulation
Molecular Dynamics Simulation
Quinolizines
Monkeypox virus
Mpox (monkeypox)

Chemicals

Alkaloids
Antiviral Agents
Matrines
oxymatrine
Quinolizines

Word Cloud

Created with Highcharts 10.0.0MarburgvirusmoleculardrugoxymatrinempoxeffectivemodifiedADMETsimulationderivativesMonkeypoxefficacypredictiondockingdynamiccomputationalcandidatesbindingviraldiseasesusingvariousfunctionalenhancemodificationsanalysispasstargetbasedDFTcalculationindicatedinteractionsconductedstabilitychemicalreactivitypropertiestherapeuticGlobalimpactspeciallyemphasizingurgentneedinterventionsOxymatrinealkaloidselectedgroupsevaluatedcomputatioanalMpoxchosenmaximumspectrumdiseasedeterminedmainobjectivestudygroupanalysesdevelopvirusescalculatedaffinitiesstrong100���nsconfirmedproteinstheoreticalprofilingdemonstratedpotentialdevelopmentMoreoverHOMO-LUMOperformedunderstandphysicochemicalcompoundstreatmentsuggestedaffinitydrug-likeHoweverexperimentalvalidationnecessaryconfirmclinicalvalueModifiednovelinhibitorsdesignapproachesdynamics

Similar Articles

Cited By