Translation profiling of stress-induced small proteins reveals a novel link among signaling systems.

Sangeevan Vellappan, Junhong Sun, John Favate, Pranavi Jagadeesan, Debbie Cerda, Premal Shah, Srujana S Yadavalli
Author Information
  1. Sangeevan Vellappan: Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA. ORCID
  2. Junhong Sun: Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA. ORCID
  3. John Favate: Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA. ORCID
  4. Pranavi Jagadeesan: Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA.
  5. Debbie Cerda: Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA.
  6. Premal Shah: Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA. ORCID
  7. Srujana S Yadavalli: Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA. ORCID

Abstract

Signaling networks allow adaptation to stressful environments by activating genes that counteract stressors. Small proteins (��� 50 amino acids long) are a rising class of stress response regulators. encodes over 150 small proteins, most of which lack phenotypes and their biological roles remain elusive. Using magnesium limitation as a stressor, we identify stress-induced small proteins using ribosome profiling, RNA sequencing, and transcriptional reporter assays. We uncover 17 small proteins with increased translation initiation, several of them transcriptionally upregulated by the PhoQ-PhoP two-component signaling system, crucial for magnesium homeostasis. Next, we describe small protein-specific deletion and overexpression phenotypes, underscoring their physiological significance in low magnesium stress. Most remarkably, we elucidate an unusual connection via a small membrane protein YoaI, between major signaling networks - PhoR-PhoB and EnvZ-OmpR in , advancing our understanding of small protein regulators in cellular signaling.

Keywords

References

  1. J Bacteriol. 2004 Nov;186(22):7618-25 [PMID: 15516575]
  2. J Bacteriol. 2005 Aug;187(16):5723-31 [PMID: 16077119]
  3. Curr Opin Microbiol. 2010 Apr;13(2):184-9 [PMID: 20149717]
  4. J Bacteriol. 1999 Sep;181(17):5516-20 [PMID: 10464230]
  5. Mol Microbiol. 2019 Jan;111(1):131-144 [PMID: 30276893]
  6. Nature. 2014 Feb 27;506(7489):489-93 [PMID: 24463524]
  7. Mol Cell. 2012 Sep 28;47(6):897-908 [PMID: 22921935]
  8. J Bacteriol. 2001 Mar;183(6):1835-42 [PMID: 11222580]
  9. mBio. 2023 Jun 27;14(3):e0253522 [PMID: 37067422]
  10. Annu Rev Microbiol. 2021 Oct 8;75:649-672 [PMID: 34623895]
  11. Nucleic Acids Res. 2024 Jun 10;52(10):5852-5865 [PMID: 38742638]
  12. Nat Commun. 2016 Jul 29;7:12340 [PMID: 27471053]
  13. Nucleic Acids Res. 2003 Jan 1;31(1):406-9 [PMID: 12520035]
  14. Front Microbiol. 2021 May 04;12:676596 [PMID: 34017319]
  15. J Bacteriol. 2010 Jan;192(1):46-58 [PMID: 19734316]
  16. Subcell Biochem. 2011;52:7-23 [PMID: 21557077]
  17. J Proteomics. 2014 Jan 31;97:265-86 [PMID: 23994099]
  18. EcoSal Plus. 2019 Sep;8(2): [PMID: 31520469]
  19. Antimicrob Agents Chemother. 2014 Oct;58(10):5696-703 [PMID: 25022583]
  20. J Bacteriol. 2000 Jul;182(14):4068-76 [PMID: 10869087]
  21. J Biol Chem. 2020 Jul 24;295(30):10434-10445 [PMID: 32518156]
  22. Mol Microbiol. 2009 Jun;72(6):1408-22 [PMID: 19432797]
  23. Bioinformatics. 2001 Jul;17(7):646-53 [PMID: 11448883]
  24. PLoS One. 2014 Apr 07;9(4):e94285 [PMID: 24710330]
  25. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5689-5694 [PMID: 28512220]
  26. J Biol Chem. 2020 Jul 3;295(27):8999-9011 [PMID: 32385111]
  27. Antimicrob Agents Chemother. 2015 Apr;59(4):2051-61 [PMID: 25605366]
  28. J Bacteriol. 2022 Jan 18;204(1):e0034421 [PMID: 34516282]
  29. PLoS Genet. 2013;9(2):e1003260 [PMID: 23408903]
  30. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  31. EcoSal Plus. 2020 Jan;9(1): [PMID: 32003321]
  32. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  33. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  34. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5752-6 [PMID: 9576956]
  35. J Bacteriol. 2022 Jan 18;204(1):e0034121 [PMID: 34309401]
  36. J Bacteriol. 1977 Aug;131(2):623-30 [PMID: 328490]
  37. Mol Microbiol. 2008 Dec;70(6):1487-501 [PMID: 19121005]
  38. Bioinformatics. 2019 Jun 1;35(12):2084-2092 [PMID: 30395178]
  39. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  40. Genes Dev. 2004 Sep 15;18(18):2302-13 [PMID: 15371344]
  41. EMBO J. 2000 Apr 17;19(8):1861-72 [PMID: 10775270]
  42. Annu Rev Microbiol. 2024 May 21;: [PMID: 38772630]
  43. J Bacteriol. 2010 Jan;192(1):59-67 [PMID: 19734312]
  44. J Mol Biol. 2004 May 14;338(5):1027-36 [PMID: 15111065]
  45. Methods. 2012 Dec;58(4):325-34 [PMID: 22841567]
  46. Trends Biochem Sci. 2016 Aug;41(8):665-678 [PMID: 27261332]
  47. Genome Biol. 2020 May 29;21(1):128 [PMID: 32471506]
  48. EcoSal Plus. 2020 May;9(1): [PMID: 32385980]
  49. Biotechniques. 2004 Mar;36(3):410-5 [PMID: 15038156]
  50. J Bacteriol. 2020 Jun 1;: [PMID: 32482726]
  51. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  52. mBio. 2019 Mar 5;10(2): [PMID: 30837344]
  53. Genome Res. 2006 Mar;16(3):365-73 [PMID: 16510898]
  54. J Biol Chem. 2019 Aug 2;294(31):11685-11700 [PMID: 31197038]
  55. Gene. 1995 May 26;158(1):9-14 [PMID: 7789817]
  56. Cell. 2019 Aug 22;178(5):1245-1259.e14 [PMID: 31402174]
  57. Mol Cell. 2011 Sep 16;43(6):880-91 [PMID: 21925377]
  58. Antimicrob Agents Chemother. 2021 Feb 17;65(3): [PMID: 33361295]
  59. Gene. 2012 Jul 1;502(1):27-35 [PMID: 22504029]
  60. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18712-7 [PMID: 17998538]
  61. Front Microbiol. 2014 Nov 26;5:643 [PMID: 25505462]
  62. Sci Signal. 2018 May 08;11(529): [PMID: 29739882]
  63. Microbiol Mol Biol Rev. 2021 Aug 18;85(3):e0017620 [PMID: 34191587]
  64. Elife. 2021 Sep 30;10: [PMID: 34591012]
  65. Genome Res. 2017 Mar;27(3):491-499 [PMID: 28100584]
  66. Methods Mol Biol. 2022;2404:83-110 [PMID: 34694605]
  67. FEBS J. 2021 Dec;288(24):7002-7024 [PMID: 33780127]
  68. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  69. Annu Rev Biochem. 2000;69:183-215 [PMID: 10966457]
  70. Genes Dev. 2018 Jan 1;32(1):79-92 [PMID: 29437726]
  71. Mol Cell. 2019 May 2;74(3):481-493.e6 [PMID: 30904393]

Grants

  1. R35 GM124976/NIGMS NIH HHS
  2. R35 GM147566/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0smallproteinssignalingmagnesiumnetworksstressresponseregulatorsphenotypesstress-inducedprofilingproteinSignalingallowadaptationstressfulenvironmentsactivatinggenescounteractstressorsSmall���50aminoacidslongrisingclassencodes150lackbiologicalrolesremainelusiveUsinglimitationstressoridentifyusingribosomeRNAsequencingtranscriptionalreporterassaysuncover17increasedtranslationinitiationseveraltranscriptionallyupregulatedPhoQ-PhoPtwo-componentsystemcrucialhomeostasisNextdescribeprotein-specificdeletionoverexpressionunderscoringphysiologicalsignificancelowremarkablyelucidateunusualconnectionviamembraneYoaImajor-PhoR-PhoBEnvZ-OmpRadvancingunderstandingcellularTranslationrevealsnovellinkamongsystemsStressbacterialstarvationtranslation-profiling

Similar Articles

Cited By