The Impact of Customized Screening Intervals on the Burden of Drug-Drug Interaction Alerts: An Interrupted Time Series Analysis.
Greet Van De Sijpe, Karolien Walgraeve, Eva Van Laer, Charlotte Quintens, Christophe Machiels, Veerle Foulon, Minne Casteels, Lorenz Van der Linden, Isabel Spriet
Author Information
Greet Van De Sijpe: Pharmacy Department, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium. greet.vandesijpe@uzleuven.be. ORCID
Fixed and broad screening intervals for drug-drug interaction (DDI) alerts lead to false positive alerts, thereby contributing to alert fatigue among healthcare professionals. Hence, we aimed to investigate the impact of customized screening intervals on the daily incidence of DDI alerts. An interrupted time series analysis was performed at the University Hospitals Leuven to evaluate the impact of a pragmatic intervention on the daily incidence of DDI alerts per 100 prescriptions. The study period encompassed 100 randomly selected days between April 2021 and December 2022. Preceding the intervention, a fixed and broad screening interval of 7 days before and after prescribing an interacting drug was applied. The intervention involved implementing customized screening intervals for a subset of highly prevalent or clinically relevant DDIs into the hospital information system. Additionally, the sensitivity of the tailored approach was evaluated. During the study period, a mean of 5731 (± 2909) new prescriptions per day was generated. The daily incidence of DDI alerts significantly decreased from 9.8% (95% confidence interval (CI) 8.4;11.1) before the intervention, to 6.3% (95% CI 5.4;7.2) afterwards, p < 0.0001. This corresponded to avoiding 201 (0.035*5731) false positive DDI alerts per day. Sensitivity was not compromised by our intervention. Defining and implementing customized screening intervals was feasible and effective in reducing the DDI alert burden without compromising sensitivity.
Institute of Medicine Committee on Quality of Health Care in A. In: Kohn LT, Corrigan JM, Donaldson MS, editors. To Err is Human: Building a Safer Health System. Washington (DC): National Academies Press (US) Copyright 2000 by the National Academy of Sciences. All rights reserved.; 2000.
Bates DW, Levine DM, Salmasian H, Syrowatka A, Shahian DM, Lipsitz S, et al. The Safety of Inpatient Health Care. N Engl J Med. 2023;388(2):142–53. PMID: 36630622. doi: https://doi.org/10.1056/NEJMsa2206117 .
[DOI: 10.1056/NEJMsa2206117]
Krähenbühl-Melcher A, Schlienger R, Lampert M, Haschke M, Drewe J, Krähenbühl S. Drug-related problems in hospitals: a review of the recent literature. Drug Saf. 2007;30(5):379–407. PMID: 17472418. doi: https://doi.org/10.2165/00002018-200730050-00003 .
[DOI: 10.2165/00002018-200730050-00003]
Magro L, Moretti U, Leone R. Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions. Expert Opin Drug Saf. 2012;11(1):83–94. PMID: 22022824. doi: https://doi.org/10.1517/14740338.2012.631910 .
[DOI: 10.1517/14740338.2012.631910]
Hennessy S, Leonard CE, Gagne JJ, Flory JH, Han X, Brensinger CM, et al. Pharmacoepidemiologic Methods for Studying the Health Effects of Drug-Drug Interactions. Clin Pharmacol Ther. 2016;99(1):92–100. PMID: 26479278. doi: https://doi.org/10.1002/cpt.277 .
[DOI: 10.1002/cpt.277]
Vélez-Díaz-Pallarés M, Pérez-Menéndez-Conde C, Bermejo-Vicedo T. Systematic review of computerized prescriber order entry and clinical decision support. Am J Health Syst Pharm. 2018;75(23):1909–21. PMID: 30463867. doi: https://doi.org/10.2146/ajhp170870 .
[DOI: 10.2146/ajhp170870]
Roumeliotis N, Sniderman J, Adams-Webber T, Addo N, Anand V, Rochon P, et al. Effect of Electronic Prescribing Strategies on Medication Error and Harm in Hospital: a Systematic Review and Meta-analysis. J Gen Intern Med. 2019;34(10):2210-23. PMID: 31396810. doi: https://doi.org/10.1007/s11606-019-05236-8 .
Kwan JL, Lo L, Ferguson J, Goldberg H, Diaz-Martinez JP, Tomlinson G, et al. Computerised clinical decision support systems and absolute improvements in care: meta-analysis of controlled clinical trials. Bmj. 2020;370:m3216. PMID: 32943437. doi: https://doi.org/10.1136/bmj.m3216 .
Nabovati E, Vakili-Arki H, Taherzadeh Z, Saberi MR, Medlock S, Abu-Hanna A, et al. Information Technology-Based Interventions to Improve Drug-Drug Interaction Outcomes: A Systematic Review on Features and Effects. J Med Syst. 2017;41(1):12. PMID: 27889873. doi: https://doi.org/10.1007/s10916-016-0649-4 .
van der Sijs H, Aarts J, Vulto A, Berg M. Overriding of drug safety alerts in computerized physician order entry. J Am Med Inform Assoc. 2006 Mar-Apr;13(2):138–47. PMID: 16357358. doi: https://doi.org/10.1197/jamia.M1809 .
[DOI: 10.1197/jamia.M1809]
Genco EK, Forster JE, Flaten H, Goss F, Heard KJ, Hoppe J, et al. Clinically Inconsequential Alerts: The Characteristics of Opioid Drug Alerts and Their Utility in Preventing Adverse Drug Events in the Emergency Department. Ann Emerg Med. 2016;67(2):240-8.e3. PMID: 26553282. doi: https://doi.org/10.1016/j.annemergmed.2015.09.020 .
Villa Zapata L, Subbian V, Boyce RD, Hansten PD, Horn JR, Gephart SM, et al. Overriding Drug-Drug Interaction Alerts in Clinical Decision Support Systems: A Scoping Review. Stud Health Technol Inform. 2022;290:380–4. PMID: 35673040. doi: https://doi.org/10.3233/shti220101 .
[DOI: 10.3233/shti220101]
Van De Sijpe G, Quintens C, Walgraeve K, Van Laer E, Penny J, De Vlieger G, et al. Overall performance of a drug-drug interaction clinical decision support system: quantitative evaluation and end-user survey. BMC Med Inform Decis Mak. 2022;22(1):48. PMID: 35193547. doi: https://doi.org/10.1186/s12911-022-01783-z .
Tolley CL, Slight SP, Husband AK, Watson N, Bates DW. Improving medication-related clinical decision support. Am J Health Syst Pharm. 2018;75(4):239–46. PMID: 29436470. doi: https://doi.org/10.2146/ajhp160830 .
[DOI: 10.2146/ajhp160830]
Shah SN, Seger DL, Fiskio JM, Horn JR, Bates DW. Comparison of Medication Alerts from Two Commercial Applications in the USA. Drug Saf. 2021;44(6):661–8. PMID: 33616888. doi: https://doi.org/10.1007/s40264-021-01048-0 .
[DOI: 10.1007/s40264-021-01048-0]
Chou E, Boyce RD, Balkan B, Subbian V, Romero A, Hansten PD, et al. Designing and evaluating contextualized drug-drug interaction algorithms. JAMIA Open. 2021;4(1):ooab023. PMID: 33763631. doi: https://doi.org/10.1093/jamiaopen/ooab023 .
Horn J, Ueng S. The Effect of Patient-Specific Drug-Drug Interaction Alerting on the Frequency of Alerts: A Pilot Study. Ann Pharmacother. 2019;53(11):1087–92. PMID: 31296026. doi: https://doi.org/10.1177/1060028019863419 .
[DOI: 10.1177/1060028019863419]
Ledger TS, Brooke-Cowden K, Coiera E. Post-implementation optimization of medication alerts in hospital computerized provider order entry systems: a scoping review. J Am Med Inform Assoc. 2023;30(12):2064-71. PMID: 37812769. doi: https://doi.org/10.1093/jamia/ocad193 .
Mille F, Schwartz C, Brion F, Fontan JE, Bourdon O, Degoulet P, et al. Analysis of overridden alerts in a drug-drug interaction detection system. Int J Qual Health Care. 2008;20(6):400-5. PMID: 18784269. doi: https://doi.org/10.1093/intqhc/mzn038 .
Bhakta SB, Colavecchia AC, Haines L, Varkey D, Garey KW. A systematic approach to optimize electronic health record medication alerts in a health system. Am J Health Syst Pharm. 2019;76(8):530–6. PMID: 31361861. doi: https://doi.org/10.1093/ajhp/zxz012 .
[DOI: 10.1093/ajhp/zxz012]
Helmons PJ, Suijkerbuijk BO, Nannan Panday PV, Kosterink JG. Drug-drug interaction checking assisted by clinical decision support: a return on investment analysis. J Am Med Inform Assoc. 2015;22(4):764–72. PMID: 25670751. doi: https://doi.org/10.1093/jamia/ocu010 .
[DOI: 10.1093/jamia/ocu010]
Askari M, Eslami S, Louws M, Wierenga PC, Dongelmans DA, Kuiper RA, et al. Frequency and nature of drug-drug interactions in the intensive care unit. Pharmacoepidemiology and Drug Safety. 2013 2013/04/01;22(4):430–7. doi: https://doi.org/10.1002/pds.3415 .
[DOI: 10.1002/pds.3415]
Kiesel LM, Bertsche A, Kiess W, Siekmeyer M, Bertsche T, Neininger MP. Drug–Drug Interactions Involving High-Alert Medications that Lead to Interaction-Associated Symptoms in Pediatric Intensive Care Patients: A Retrospective Study. Pediatric Drugs. 2024 2024/07/04. doi: https://doi.org/10.1007/s40272-024-00641-x .
Bakker T, Abu-Hanna A, Dongelmans DA, Vermeijden WJ, Bosman RJ, de Lange DW, et al. Clinically relevant potential drug-drug interactions in intensive care patients: A large retrospective observational multicenter study. Journal of Critical Care. 2021 2021/04/01/;62:124 – 30. doi: https://doi.org/10.1016/j.jcrc.2020.11.020 .
Wasylewicz ATM, van de Burgt BWM, Manten T, Kerskes M, Compagner WN, Korsten EHM, et al. Contextualized Drug-Drug Interaction Management Improves Clinical Utility Compared With Basic Drug-Drug Interaction Management in Hospitalized Patients. Clin Pharmacol Ther. 2022;112(2):382–90. PMID: 35486411. doi: https://doi.org/10.1002/cpt.2624 .
[DOI: 10.1002/cpt.2624]
Muylle KM, Gentens K, Dupont AG, Cornu P. Evaluation of an optimized context-aware clinical decision support system for drug-drug interaction screening. Int J Med Inform. 2021;148:104393. PMID: 33486355. doi: https://doi.org/10.1016/j.ijmedinf.2021.104393 .
Resetar E, Reichley RM, Noirot LA, Dunagan WC, Bailey TC, editors. Customizing a commercial rule base for detecting drug-drug interactions. 2005: American Medical Informatics Association.
Reese T, Wright A, Liu S, Boyce R, Romero A, Del Fiol G, et al. Improving the specificity of drug-drug interaction alerts: Can it be done? Am J Health Syst Pharm. 2022;79(13):1086-95. PMID: 35136935. doi: https://doi.org/10.1093/ajhp/zxac045 .
Seidling HM, Klein U, Schaier M, Czock D, Theile D, Pruszydlo MG, et al. What, if all alerts were specific - estimating the potential impact on drug interaction alert burden. Int J Med Inform. 2014;83(4):285–91. PMID: 24484781. doi: https://doi.org/10.1016/j.ijmedinf.2013.12.006 .
[DOI: 10.1016/j.ijmedinf.2013.12.006]
Bakker T, Klopotowska JE, Dongelmans DA, Eslami S, Vermeijden WJ, Hendriks S, et al. The effect of computerised decision support alerts tailored to intensive care on the administration of high-risk drug combinations, and their monitoring: a cluster randomised stepped-wedge trial. The Lancet. 2024 2024/01/20/. doi: https://doi.org/10.1016/S0140-6736(23)02465-0 .
Quintens C, De Rijdt T, Van Nieuwenhuyse T, Simoens S, Peetermans WE, Van den Bosch B, et al. Development and implementation of “Check of Medication Appropriateness” (CMA): advanced pharmacotherapy-related clinical rules to support medication surveillance. BMC Med Inform Decis Mak. 2019;19(1):29. PMID: 30744674. doi: https://doi.org/10.1186/s12911-019-0748-5 .
Quintens C, Van de Sijpe G, Van der Linden L, Spriet I. Computerised prescribing support still needs a human touch. Age and Ageing. 2020. doi: https://doi.org/10.1093/ageing/afaa200 .
[DOI: 10.1093/ageing/afaa200]
Quintens C, Peetermans WE, Lagrou K, Declercq P, Schuermans A, Debaveye Y, et al. The effectiveness of Check of Medication Appropriateness for antimicrobial stewardship: an interrupted time series analysis. J Antimicrob Chemother. 2021 Oct 7. PMID: 34618025. doi: https://doi.org/10.1093/jac/dkab364 .
Quintens C, Verhamme P, Vanassche T, Vandenbriele C, Van den Bosch B, Peetermans WE, et al. Improving appropriate use of anticoagulants in hospitalised patients: A pharmacist-led Check of Medication Appropriateness intervention. Br J Clin Pharmacol. 2022;88(6):2959–68. PMID: 34913184. doi: https://doi.org/10.1111/bcp.15184 .
[DOI: 10.1111/bcp.15184]
Quintens C, De Coster J, Van der Linden L, Morlion B, Nijns E, Van den Bosch B, et al. Impact of Check of Medication Appropriateness (CMA) in optimizing analgesic prescribing: An interrupted time series analysis. Eur J Pain. 2021;25(3):704–13. PMID: 33259703. doi: https://doi.org/10.1002/ejp.1705 .
[DOI: 10.1002/ejp.1705]
Wagner AK, Soumerai SB, Zhang F, Ross-Degnan D. Segmented regression analysis of interrupted time series studies in medication use research. J Clin Pharm Ther. 2002;27(4):299–309. PMID: 12174032. doi: https://doi.org/10.1046/j.1365-2710.2002.00430.x .
[DOI: 10.1046/j.1365-2710.2002.00430.x]
Kane-Gill SL, O’Connor MF, Rothschild JM, Selby NM, McLean B, Bonafide CP, et al. Technologic Distractions (Part 1): Summary of Approaches to Manage Alert Quantity With Intent to Reduce Alert Fatigue and Suggestions for Alert Fatigue Metrics. Critical Care Medicine. 2017;45(9).
Payne TH, Hines LE, Chan RC, Hartman S, Kapusnik-Uner J, Russ AL, et al. Recommendations to improve the usability of drug-drug interaction clinical decision support alerts. J Am Med Inform Assoc. 2015;22(6):1243–50. PMID: 25829460. doi: https://doi.org/10.1093/jamia/ocv011 .
[DOI: 10.1093/jamia/ocv011]
Edrees H, Amato MG, Wong A, Seger DL, Bates DW. High-priority drug-drug interaction clinical decision support overrides in a newly implemented commercial computerized provider order-entry system: Override appropriateness and adverse drug events. J Am Med Inform Assoc. 2020;27(6):893–900. PMID: 32337561. doi: https://doi.org/10.1093/jamia/ocaa034 .
[DOI: 10.1093/jamia/ocaa034]
Wong A, Amato MG, Seger DL, Rehr C, Wright A, Slight SP, et al. Prospective evaluation of medication-related clinical decision support over-rides in the intensive care unit. BMJ Qual Saf. 2018;27(9):718–24. PMID: 29440481. doi: https://doi.org/10.1136/bmjqs-2017-007531 .
[DOI: 10.1136/bmjqs-2017-007531]
Amaral ACK-B, Cuthbertson BH. The efficiency of computerised clinical decision support systems. The Lancet. doi: https://doi.org/10.1016/S0140-6736(23)02839-8 .
Vandael E, Vandenberk B, Vandenberghe J, Van den Bosch B, Willems R, Foulon V. A smart algorithm for the prevention and risk management of QTc prolongation based on the optimized RISQ-PATH model. Br J Clin Pharmacol. 2018;84(12):2824–35. PMID: 30112769. doi: https://doi.org/10.1111/bcp.13740 .
[DOI: 10.1111/bcp.13740]
Eppenga WL, Derijks HJ, Conemans JM, Hermens WA, Wensing M, De Smet PA. Comparison of a basic and an advanced pharmacotherapy-related clinical decision support system in a hospital care setting in the Netherlands. J Am Med Inform Assoc. 2012 Jan-Feb;19(1):66–71. PMID: 21890873. doi: https://doi.org/10.1136/amiajnl-2011-000360 .
[DOI: 10.1136/amiajnl-2011-000360]
Duke JD, Li X, Dexter P. Adherence to drug-drug interaction alerts in high-risk patients: a trial of context-enhanced alerting. J Am Med Inform Assoc. 2013;20(3):494–8. PMID: 23161895. doi: https://doi.org/10.1136/amiajnl-2012-001073 .
[DOI: 10.1136/amiajnl-2012-001073]
Parke C, Santiago E, Zussy B, Klipa D. Reduction of clinical support warnings through recategorization of severity levels. Am J Health Syst Pharm. 2015;72(2):144–8. PMID: 25550138. doi: https://doi.org/10.2146/ajhp140095 .
[DOI: 10.2146/ajhp140095]
Paterno MD, Maviglia SM, Gorman PN, Seger DL, Yoshida E, Seger AC, et al. Tiering drug-drug interaction alerts by severity increases compliance rates. J Am Med Inform Assoc. 2009 Jan-Feb;16(1):40–6. PMID: 18952941. doi: https://doi.org/10.1197/jamia.M2808 .
[DOI: 10.1197/jamia.M2808]
Bakker T, Dongelmans DA, Nabovati E, Eslami S, de Keizer NF, Abu-Hanna A, et al. Heterogeneity in the Identification of Potential Drug-Drug Interactions in the Intensive Care Unit: A Systematic Review, Critical Appraisal, and Reporting Recommendations. J Clin Pharmacol. 2022;62(6):706–20. PMID: 34957573. doi: https://doi.org/10.1002/jcph.2020 .
[DOI: 10.1002/jcph.2020]
van der Sijs H, Lammers L, van den Tweel A, Aarts J, Berg M, Vulto A, et al. Time-dependent Drug–Drug Interaction Alerts in Care Provider Order Entry: Software May Inhibit Medication Error Reductions. Journal of the American Medical Informatics Association. 2009 2009/11/01/;16(6):864–8. doi: https://doi.org/10.1197/jamia.M2810 .
Poly TN, Islam MM, Yang HC, Li YJ. Appropriateness of Overridden Alerts in Computerized Physician Order Entry: Systematic Review. JMIR Med Inform. 2020;8(7):e15653. PMID: 32706721. doi: https://doi.org/10.2196/15653 .
[DOI: 10.2196/15653]
Nanji KC, Seger DL, Slight SP, Amato MG, Beeler PE, Her QL, et al. Medication-related clinical decision support alert overrides in inpatients. J Am Med Inform Assoc. 2018;25(5):476–81. PMID: 29092059. doi: https://doi.org/10.1093/jamia/ocx115 .
[DOI: 10.1093/jamia/ocx115]