AteMeVs: An R package for the estimation of the average treatment effect with measurement error and variable selection for confounders.

Li-Pang Chen, Grace Y Yi
Author Information
  1. Li-Pang Chen: Department of Statistics, National Chengchi University, Taipei, Taiwan, ROC. ORCID
  2. Grace Y Yi: Department of Statistical and Actuarial Sciences, Department of Computer Science, University of Western Ontario, London, Canada.

Abstract

In causal inference, the estimation of the average treatment effect is often of interest. For example, in cancer research, an interesting question is to assess the effects of the chemotherapy treatment on cancer, with the information of gene expressions taken into account. Two crucial challenges in this analysis involve addressing measurement error in gene expressions and handling noninformative gene expressions. While analytical methods have been developed to address those challenges, no user-friendly computational software packages seem to be available to implement those methods. To close this gap, we develop an R package, called AteMeVs, to estimate the average treatment effect using the inverse-probability-weighting estimation method to handle data with both measurement error and spurious variables. This developed package accommodates the method proposed by Yi and Chen (2023) as a special case, and further extends its application to a broader scope. The usage of the developed R package is illustrated by applying it to analyze a cancer dataset with information of gene expressions.

References

  1. Biometrics. 2005 Dec;61(4):962-73 [PMID: 16401269]
  2. J Am Stat Assoc. 2015 Jun 1;110(510):681-696 [PMID: 26190876]
  3. Biometrics. 2021 Sep;77(3):956-969 [PMID: 32687216]
  4. JCI Insight. 2021 Jan 11;6(1): [PMID: 33427211]
  5. Stat Methods Med Res. 2019 Jul;28(7):2049-2068 [PMID: 29241426]
  6. Int J Epidemiol. 2015 Aug;44(4):1452-9 [PMID: 25921223]
  7. Hum Mol Genet. 2021 Apr 26;30(3-4):305-317 [PMID: 33575800]
  8. Am J Epidemiol. 2016 Aug 1;184(3):249-58 [PMID: 27416840]
  9. Stat Methods Med Res. 2020 Sep;29(9):2445-2469 [PMID: 31939336]
  10. Biom J. 2019 Nov;61(6):1507-1525 [PMID: 31449324]
  11. Biometrics. 2012 Sep;68(3):707-16 [PMID: 22834993]
  12. Nat Commun. 2016 May 10;7:11479 [PMID: 27161491]
  13. Biom J. 2012 May;54(3):343-60 [PMID: 22685001]
  14. Int J Cancer. 2020 Dec 1;147(11):2988-2995 [PMID: 32406095]
  15. Biometrics. 2017 Dec;73(4):1111-1122 [PMID: 28273693]
  16. Can J Stat. 2015 Dec;43(4):498-518 [PMID: 26877582]
  17. Breast Cancer Res. 2013 Jan 21;15(1):R5 [PMID: 23336272]
  18. J Cancer. 2018 Jun 5;9(13):2249-2265 [PMID: 30026820]
  19. Biometrika. 2013;100(3):671-680 [PMID: 24795484]
  20. Stat Med. 2004 Oct 15;23(19):2937-60 [PMID: 15351954]
  21. Stat Methods Med Res. 2023 Apr;32(4):691-711 [PMID: 36694932]

MeSH Term

Software
Humans
Neoplasms

Word Cloud

Created with Highcharts 10.0.0treatmentgeneexpressionspackageestimationaverageeffectcancermeasurementerrordevelopedRinformationchallengesmethodsmethodcausalinferenceofteninterestexampleresearchinterestingquestionassesseffectschemotherapytakenaccountTwocrucialanalysisinvolveaddressinghandlingnoninformativeanalyticaladdressuser-friendlycomputationalsoftwarepackagesseemavailableimplementclosegapdevelopcalledAteMeVsestimateusinginverse-probability-weightinghandledataspuriousvariablesaccommodatesproposedYiChen2023specialcaseextendsapplicationbroaderscopeusageillustratedapplyinganalyzedatasetAteMeVs:variableselectionconfounders

Similar Articles

Cited By

No available data.