Transcriptional regulation of hormone signalling genes in black pepper in response to Phytophthora capsici.

Chidambareswaren Mahadevan, K Mohamed Shafi, B Nagarathnam, Manjula Sakuntala, Ramanathan Sowdhamini
Author Information
  1. Chidambareswaren Mahadevan: Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, 695014, Kerala, India.
  2. K Mohamed Shafi: National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, 560065, Karnataka, India.
  3. B Nagarathnam: National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, 560065, Karnataka, India.
  4. Manjula Sakuntala: Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, 695014, Kerala, India. smanjula@rgcb.res.in.
  5. Ramanathan Sowdhamini: National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, 560065, Karnataka, India. mini@ncbs.res.in.

Abstract

INTRODUCTION: Black pepper (Piper nigrum L.) is a non-model spice crop of significant agricultural and biological importance. The 'quick wilt' disease caused by the oomycete Phytophthora capsici is a major threat, leading to substantial crop loss. The molecular mechanisms governing the plant immune responses to this pathogen remain unclear. This study employs RNA sequencing and transcriptome analysis to explore the defense mechanisms of P. nigrum against P. capsici.
RESULTS: Two-month-old P. nigrum plantlets were subjected to infection with P. capsici, and leaf samples were collected at 6- and 12-hours post-inoculation. RNA was extracted, sequenced, and the resulting data were processed and assembled. Differential gene expression analysis was conducted to identify genes responding to the infection. Additionally, the study investigated the involvement of Salicylic acid (SA), Jasmonic acid (JA), and Ethylene (ET) signalling pathways. Our transcriptome assembly comprised 64,667 transcripts with 96.7% completeness, providing valuable insights into the P. nigrum transcriptome. Annotation of these transcripts identified functional categories and domains, provided details on molecular processes. Gene expression analysis identified 4,714 transcripts at 6 h post-infection (hpi) and 9,416 at 12 hpi as differentially expressed, revealing dynamic regulation of immune-related genes. Furthermore, the study investigated key genes involved in biosynthesis pathways of Salicylic acid, Jasmonic acid, and Ethylene signalling. Notably, we found differential regulation of critical genes associated with these pathways while comparing data before and after infection, thereby shedding light on their roles in defense mechanism in P. nigrum defense.
CONCLUSIONS: This comprehensive transcriptome analysis of P. nigrum response to P. capsici attack provides valuable insights into the plant defense mechanisms. The dynamic regulation of innate immunity and the involvement of key signalling pathways highlight the complexity of the plant-pathogen interaction. This study contributes to our understanding of plant immunity and offers potential strategies for enhancing P. nigrum resistance to this harmful pathogen.

Keywords

References

  1. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  2. Nat Commun. 2019 Oct 16;10(1):4702 [PMID: 31619678]
  3. Sci Rep. 2017 Jul 25;7(1):6383 [PMID: 28743967]
  4. Mol Plant Microbe Interact. 2009 May;22(5):487-97 [PMID: 19348567]
  5. MethodsX. 2020 Sep 02;7:101053 [PMID: 33024710]
  6. Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515 [PMID: 30395287]
  7. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  8. Mol Plant Pathol. 2016 Jan;17(1):42-54 [PMID: 25808779]
  9. Nature. 2007 Aug 9;448(7154):666-71 [PMID: 17637675]
  10. Methods Mol Biol. 2014;1079:105-16 [PMID: 24170397]
  11. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  12. Front Plant Sci. 2016 Jun 20;7:785 [PMID: 27379110]
  13. Plant Cell. 2018 Feb;30(2):285-299 [PMID: 29382771]
  14. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  15. Plant Cell. 2011 Feb;23(2):701-15 [PMID: 21335373]
  16. Nat Rev Mol Cell Biol. 2018 Aug;19(8):489-506 [PMID: 29784956]
  17. Proteins. 1997 Jul;28(3):405-20 [PMID: 9223186]
  18. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  19. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  20. Front Plant Sci. 2014 Dec 09;5:697 [PMID: 25538725]
  21. Bioinformatics. 2017 Nov 15;33(22):3635-3637 [PMID: 29036533]
  22. Plant Cell. 2003 Jan;15(1):165-78 [PMID: 12509529]
  23. Nature. 2007 Aug 9;448(7154):661-5 [PMID: 17637677]
  24. Annu Rev Phytopathol. 2006;44:393-416 [PMID: 16602950]
  25. PLoS One. 2013;8(3):e56694 [PMID: 23469176]
  26. J Exp Bot. 2017 Mar 1;68(6):1303-1321 [PMID: 27940470]
  27. Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12539-44 [PMID: 21737749]
  28. Genome Biol. 2019 Dec 16;20(1):278 [PMID: 31842956]
  29. Front Plant Sci. 2019 Oct 18;10:1349 [PMID: 31681397]
  30. BMC Bioinformatics. 2004 Aug 19;5:113 [PMID: 15318951]
  31. Source Code Biol Med. 2017 Feb 3;12:2 [PMID: 28174599]
  32. Trends Plant Sci. 2017 Oct;22(10):871-879 [PMID: 28743380]
  33. BMC Plant Biol. 2010 Jun 08;10:103 [PMID: 20529319]
  34. Annu Rev Cell Dev Biol. 2012;28:489-521 [PMID: 22559264]
  35. Mol Biol Evol. 2010 Apr;27(4):862-74 [PMID: 19942615]
  36. Trends Plant Sci. 2006 Feb;11(2):80-8 [PMID: 16406305]
  37. BMC Plant Biol. 2012 Sep 17;12:168 [PMID: 22984782]

Grants

  1. BT/PR17789/BPA/118/189/2016/Department of Biotechnology, Ministry of Science and Technology, India
  2. BT/PR17789/BPA/118/189/2016/Department of Biotechnology, Ministry of Science and Technology, India
  3. BT/PR17789/BPA/118/189/2016/Department of Biotechnology, Ministry of Science and Technology, India
  4. BT/PR17789/BPA/118/189/2016/Department of Biotechnology, Ministry of Science and Technology, India
  5. IBAB/MSCB/182/2022/Institute of Bioinformatics and Applied Biotechnology, India
  6. IBAB/MSCB/182/2022/Institute of Bioinformatics and Applied Biotechnology, India
  7. SB/S2/JC-071/2015/Science and Engineering Research Board, India

MeSH Term

Phytophthora
Piper nigrum
Gene Expression Regulation, Plant
Plant Diseases
Signal Transduction
Plant Growth Regulators
Gene Expression Profiling
Transcriptome
Disease Resistance
Oxylipins
Cyclopentanes

Chemicals

Plant Growth Regulators
Oxylipins
jasmonic acid
Cyclopentanes

Word Cloud

Created with Highcharts 10.0.0PnigrumcapsicigenessignallingstudytranscriptomeanalysisdefenseacidpathwaysregulationPhytophthoramechanismsplantinfectionexpressiontranscriptsimmunitypepperPipercropmolecularpathogenRNAdatainvestigatedinvolvementSalicylicJasmonicEthylenevaluableinsightsidentifiedGenehpidynamickeyresponseinnateINTRODUCTION:BlackLnon-modelspicesignificantagriculturalbiologicalimportance'quickwilt'diseasecausedoomycetemajorthreatleadingsubstantiallossgoverningimmuneresponsesremainunclearemployssequencingexploreRESULTS:Two-month-oldplantletssubjectedleafsamplescollected6-12-hourspost-inoculationextractedsequencedresultingprocessedassembledDifferentialgeneconductedidentifyrespondingAdditionallySAJAETassemblycomprised64667967%completenessprovidingAnnotationfunctionalcategoriesdomainsprovideddetailsprocesses47146 hpost-infection941612differentiallyexpressedrevealingimmune-relatedFurthermoreinvolvedbiosynthesisNotablyfounddifferentialcriticalassociatedcomparingtherebysheddinglightrolesmechanismCONCLUSIONS:comprehensiveattackprovideshighlightcomplexityplant-pathogeninteractioncontributesunderstandingofferspotentialstrategiesenhancingresistanceharmfulTranscriptionalhormoneblackHormonePlantTranscriptomics

Similar Articles

Cited By

No available data.