The statistical building blocks of animal movement simulations.

Wayne M Getz, Richard Salter, Varun Sethi, Shlomo Cain, Orr Spiegel, Sivan Toledo
Author Information
  1. Wayne M Getz: Department Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA. wgetz@berkeley.edu.
  2. Richard Salter: Numerus Inc., 850 Iron Point Road, Folsom, CA, 95630, USA. richard.salter@numerusinc.com.
  3. Varun Sethi: Department Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA.
  4. Shlomo Cain: School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
  5. Orr Spiegel: School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
  6. Sivan Toledo: Blavatnik School of Computer Science, Tel Aviv University, 69978, Tel Aviv, Israel.

Abstract

Animal movement plays a key role in many ecological processes and has a direct influence on an individual's fitness at several scales of analysis (i.e., next-step, subdiel, day-by-day, seasonal). This highlights the need to dissect movement behavior at different spatio-temporal scales and develop hierarchical movement tools for generating realistic tracks to supplement existing single-temporal-scale simulators. In reality, animal movement paths are a concatenation of fundamental movement elements (FuMEs: e.g., a step or wing flap), but these are not generally extractable from a relocation time-series track (e.g., sequential GPS fixes) from which step-length (SL, aka velocity) and turning-angle (TA) time series can be extracted. For short, fixed-length segments of track, we generate their SL and TA statistics (e.g., means, standard deviations, correlations) to obtain segment-specific vectors that can be cluster into different types. We use the centroids of these clusters to obtain a set of statistical movement elements (StaMEs; e.g.,directed fast movement versus random slow movement elements) that we use as a basis for analyzing and simulating movement tracks. Our novel concept is that sequences of StaMEs provide a basis for constructing and fitting step-selection kernels at the scale of fixed-length canonical activity modes: short fixed-length sequences of interpretable activity such as dithering, ambling, directed walking, or running. Beyond this, variable length pure or characteristic mixtures of CAMs can be interpreted as behavioral activity modes (BAMs), such as gathering resources (a sequence of dithering and walking StaMEs) or beelining (a sequence of fast directed-walk StaMEs interspersed with vigilance and navigation stops). Here we formulate a multi-modal, step-selection kernel simulation framework, and construct a 2-mode movement simulator (Numerus ANIMOVER_1), using Numerus RAMP technology. These RAMPs run as stand alone applications: they require no coding but only the input of selected parameter values. They can also be used in R programming environments as virtual R packages. We illustrate our methods for extracting StaMEs from both ANIMOVER_1 simulated data and empirical data from two barn owls (Tyto alba) in the Harod Valley, Israel. Overall, our new bottom-up approach to path segmentation allows us to both dissect real movement tracks and generate realistic synthetic ones, thereby providing a general tool for testing hypothesis in movement ecology and simulating animal movement in diverse contexts such as evaluating an individual's response to landscape changes, release of an individual into a novel environment, or identifying when individuals are sick or unusually stressed.

Keywords

References

  1. Trends Ecol Evol. 2020 Feb;35(2):163-174 [PMID: 31699411]
  2. Ecol Lett. 2011 Feb;14(2):113-24 [PMID: 21199247]
  3. Ecol Lett. 2009 May;12(5):395-408 [PMID: 19379134]
  4. Mov Ecol. 2023 Feb 7;11(1):10 [PMID: 36750910]
  5. IEEE Trans Neural Netw Learn Syst. 2024 Jul 04;PP: [PMID: 38963736]
  6. Mov Ecol. 2014 Feb 07;2(1):4 [PMID: 25520815]
  7. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5582-5587 [PMID: 30804188]
  8. PLoS Comput Biol. 2022 Aug 18;18(8):e1009577 [PMID: 35981006]
  9. Ecol Evol. 2022 Jul 24;12(7):e9128 [PMID: 35898421]
  10. PLoS One. 2015 Aug 14;10(8):e0133732 [PMID: 26274613]
  11. Am Nat. 2013 Sep;182(3):298-312 [PMID: 23933722]
  12. BMC Med Educ. 2022 Aug 20;22(1):632 [PMID: 35987608]
  13. Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200209 [PMID: 33583273]
  14. Philos Trans R Soc Lond B Biol Sci. 2019 Sep 30;374(1782):20180342 [PMID: 31401951]
  15. Mov Ecol. 2013 Jul 05;1(1):5 [PMID: 25709819]
  16. PLoS One. 2015 Jun 11;10(6):e0128821 [PMID: 26066834]
  17. Mov Ecol. 2024 Jan 8;12(1):1 [PMID: 38191509]
  18. Mov Ecol. 2023 Oct 20;11(1):65 [PMID: 37864238]
  19. Trends Ecol Evol. 2021 Apr;36(4):308-320 [PMID: 33229137]
  20. Methods Ecol Evol. 2022 Apr;13(4):813-825 [PMID: 35910299]
  21. Ecol Lett. 2014 Mar;17(3):261-72 [PMID: 24350897]
  22. Ecol Appl. 2018 Apr;28(3):854-864 [PMID: 29420867]
  23. Ecol Lett. 2022 Dec;25(12):2726-2738 [PMID: 36256526]
  24. J Anim Ecol. 2022 Feb;91(2):287-307 [PMID: 34657296]
  25. Nature. 2005 Feb 3;433(7025):513-6 [PMID: 15690039]
  26. Trends Ecol Evol. 2019 May;34(5):459-473 [PMID: 30879872]
  27. Ecol Lett. 2008 Dec;11(12):1338-50 [PMID: 19046362]
  28. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2289-301 [PMID: 20566505]
  29. Ecol Lett. 2018 Apr;21(4):588-604 [PMID: 29446237]
  30. Integr Comp Biol. 2017 Aug 1;57(2):267-280 [PMID: 28859405]
  31. Philos Trans R Soc Lond B Biol Sci. 2019 Sep 16;374(1781):20180049 [PMID: 31352896]
  32. Science. 2015 Jun 12;348(6240):aaa2478 [PMID: 26068858]
  33. PLoS One. 2015 Apr 21;10(4):e0122947 [PMID: 25898019]
  34. Brief Bioinform. 2021 Jan 18;22(1):393-415 [PMID: 32008043]
  35. Big Data. 2021 Feb;9(1):3-21 [PMID: 33275484]
  36. Curr Opin Neurobiol. 2020 Feb;60:55-66 [PMID: 31812940]
  37. Sci Adv. 2017 Jan 04;3(1):e1601360 [PMID: 28070557]
  38. J Anim Ecol. 2016 Jan;85(1):69-84 [PMID: 25907267]
  39. J Theor Biol. 2005 Apr 21;233(4):573-88 [PMID: 15748917]
  40. Ecology. 2016 May;97(5):1099-112 [PMID: 27349088]
  41. Ecol Lett. 2017 Jan;20(1):3-18 [PMID: 28000433]
  42. J Anim Ecol. 2016 Jan;85(1):32-42 [PMID: 25950737]
  43. Mov Ecol. 2023 Oct 4;11(1):61 [PMID: 37794525]
  44. Mol Ecol. 2020 Apr;29(7):1358-1371 [PMID: 32115796]
  45. Mov Ecol. 2017 Jun 1;5:12 [PMID: 28580149]
  46. Mov Ecol. 2019 Nov 09;7:34 [PMID: 31728193]
  47. Mov Ecol. 2023 Mar 21;11(1):15 [PMID: 36945057]
  48. Ecol Appl. 2012 Oct;22(7):2007-20 [PMID: 23210316]
  49. BMC Evol Biol. 2016 Feb 29;16:50 [PMID: 26922946]
  50. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19066-71 [PMID: 19060192]
  51. PLoS One. 2020 Jul 27;15(7):e0235750 [PMID: 32716917]
  52. Ecology. 2012 Nov;93(11):2336-42 [PMID: 23236905]
  53. Mov Ecol. 2016 Sep 01;4(1):21 [PMID: 27595001]
  54. Mov Ecol. 2020 Feb 17;8:12 [PMID: 32099656]

Grants

  1. ISF-965-15, 1919/19, 396/20/Israel Science Foundation

Word Cloud

Created with Highcharts 10.0.0movementeStaMEsgcananalysistracksanimalelementsfixed-lengthactivityNumerusindividual'sscalesdissectdifferentrealistictrackSLTAshortgenerateobtainclusterusestatisticaldirectedfastbasissimulatingnovelsequencesstep-selectionditheringwalkingsequenceANIMOVER_1RdataTytoalbapathsegmentationAnimalplayskeyrolemanyecologicalprocessesdirectinfluencefitnessseveralinext-stepsubdielday-by-dayseasonalhighlightsneedbehaviorspatio-temporaldevelophierarchicaltoolsgeneratingsupplementexistingsingle-temporal-scalesimulatorsrealitypathsconcatenationfundamentalFuMEs:stepwingflapgenerallyextractablerelocationtime-seriessequentialGPSfixesstep-lengthakavelocityturning-angletimeseriesextractedsegmentsstatisticsmeansstandarddeviationscorrelationssegment-specificvectorstypescentroidsclusterssetversusrandomslowanalyzingconceptprovideconstructingfittingkernelsscalecanonicalmodes:interpretableamblingrunningBeyondvariablelengthpurecharacteristicmixturesCAMsinterpretedbehavioralmodesBAMsgatheringresourcesbeeliningdirected-walkinterspersedvigilancenavigationstopsformulatemulti-modalkernelsimulationframeworkconstruct2-modesimulatorusingRAMPtechnologyRAMPsrunstandaloneapplications:requirecodinginputselectedparametervaluesalsousedprogrammingenvironmentsvirtualpackagesillustratemethodsextractingsimulatedempiricaltwobarnowlsHarodValleyIsraelOverallnewbottom-upapproachallowsusrealsyntheticonestherebyprovidinggeneraltooltestinghypothesisecologydiversecontextsevaluatingresponselandscapechangesreleaseindividualenvironmentidentifyingindividualssickunusuallystressedbuildingblockssimulationsBarnowlHierarchicalIndividual-basedmodelsIBMMovementMultiscaleANIMOVER

Similar Articles

Cited By