Non-Volatile Resistive Switching in Nanoscaled Elemental Tellurium by Vapor Transport Deposition on Gold.

Sara Ghomi, Christian Martella, Yoonseok Lee, Penny Hui-Ping Chang, Paolo Targa, Andrea Serafini, Davide Codegoni, Chiara Massetti, Sepideh Gharedaghi, Alessio Lamperti, Carlo Grazianetti, Deji Akinwande, Alessandro Molle
Author Information
  1. Sara Ghomi: CNR IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, 20864, Italy. ORCID
  2. Christian Martella: CNR IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, 20864, Italy. ORCID
  3. Yoonseok Lee: Microelectronics Research Center, The University of Texas at Austin, Austin, Texas, 78758, USA.
  4. Penny Hui-Ping Chang: Microelectronics Research Center, The University of Texas at Austin, Austin, Texas, 78758, USA.
  5. Paolo Targa: STMicroelectronics, via C. Olivetti 2, Agrate Brianza, 20864, Italy.
  6. Andrea Serafini: STMicroelectronics, via C. Olivetti 2, Agrate Brianza, 20864, Italy.
  7. Davide Codegoni: STMicroelectronics, via C. Olivetti 2, Agrate Brianza, 20864, Italy.
  8. Chiara Massetti: CNR IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, 20864, Italy. ORCID
  9. Sepideh Gharedaghi: CNR IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, 20864, Italy.
  10. Alessio Lamperti: CNR IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, 20864, Italy. ORCID
  11. Carlo Grazianetti: CNR IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, 20864, Italy. ORCID
  12. Deji Akinwande: Microelectronics Research Center, The University of Texas at Austin, Austin, Texas, 78758, USA. ORCID
  13. Alessandro Molle: CNR IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, 20864, Italy. ORCID

Abstract

Two-dimensional (2D) materials are promising for resistive switching in neuromorphic and in-memory computing, as their atomic thickness substantially improve the energetic budget of the device and circuits. However, many 2D resistive switching materials struggle with complex growth methods or limited scalability. 2D tellurium exhibits striking characteristics such as simplicity in chemistry, structure, and synthesis making it suitable for various applications. This study reports the first memristor design based on nanoscaled tellurium synthesized by vapor transport deposition (VTD) at a temperature as low as 100 °C fully compatible with back-end-of-line processing. The resistive switching behavior of tellurium nanosheets is studied by conductive atomic force microscopy, providing valuable insights into its memristive functionality, supported by microscale device measurements. Selecting gold as the substrate material enhances the memristive behavior of nanoscaled tellurium in terms of reduced values of set voltage and energy consumption. In addition, formation of conductive paths leading to resistive switching behavior on the gold substrate is driven by gold-tellurium interface reconfiguration during the VTD process as revealed by energy electron loss spectroscopy analysis. These findings reveal the potential of nanoscaled tellurium as a versatile and scalable material for neuromorphic computing and underscore the influential role of gold electrodes in enhancing its memristive performance.

Keywords

References

  1. J. von Neumann, IEEE Ann. Hist. Comput. 1993, 15, 27.
  2. D. V. Christensen, R. Dittmann, B. Linares‐Barranco, A. Sebastian, M. L. Gallo, A. Redaelli, S. Slesazeck, T. Mikolajick, S. Spiga, S. Menzel, I. Valov, G. Milano, C. Ricciardi, S.‐J. Liang, F. Miao, M. Lanza, T. J. Quill, S. T. Keene, A. Salleo, J. Grollier, D. Marković, A. Mizrahi, P. Yao, J. J. Yang, G. Indiveri, J. P. Strachan, S. Datta, E. Vianello, A. Valentian, J. Feldmannet, et al., Neuromorph. Comput. Eng. 2022, 2, 022501.
  3. M. Lanza, A. Sebastian, W. D. Lu, M. Le Gallo, M.‐F. Chang, D. Akinwande, F. M. Puglisi, H. N. Alshareef, M. Liu, J. B. Roldan, Science 2022, 376, eabj9979.
  4. J. S. Lee, S. Lee, T. W. Noh, Appl. Phys. Rev. 2015, 2, 031303.
  5. L. Chua, IEEE TCAS‐I 1971, 18, 507.
  6. R. S. Williams, IEEE Spectrum 2008, 45, 28.
  7. D. Ielmini, Semicond. Sci. Technol. 2016, 31, 063002.
  8. H. Nakamura, I. Rungger, S. Sanvito, N. Inoue, J. Tominaga, Y. Asai, Nanoscale 2017, 9, 9386.
  9. X. Zou, H. G. Ong, L. You, W. Chen, H. Ding, H. Funakubo, L. Chen, J. Wang, AIP Adv. 2012, 2, 032166.
  10. F. Xue, X. He, Y. Ma, D. Zheng, C. Zhang, L.‐J. Li, J.‐H. He, B. Yu, X. Zhang, Nat. Commun. 2021, 12, 7291.
  11. A. D. Kent, D. C. Worledge, Nat. Nanotech. 2015, 10, 187.
  12. T. S. Bhat, C. C. Revadekar, S. S. Patil, T. D. Dongale, D. Kim, P. S. Patil, J. Mater. Sci.: Mater. Electron. 2020, 31, 10919.
  13. Memory with a spin. Nat. Nanotech. 2015, 10, 185.
  14. F. Zahoor, T. Z. Azni Zulkifli, F. A. Khanday, Nanoscale Res. Lett. 2020, 15, 90.
  15. R. Waser, M. Aono, Nat. Mater. 2007, 6, 833.
  16. K. Sun, J. Chen, X. Yan, Adv. Funct. Mater. 2021, 31, 2006773.
  17. A. Sawa, Mater. Today 2008, 11, 28.
  18. W. Huh, D. Lee, C.‐H. Lee, Adv. Mater. 2020, 32, 2002092.
  19. F. Hui, E. Grustan‐Gutierrez, S. Long, Q. Liu, A. K. Ott, A. C. Ferrari, M. Lanza, Adv. Electron. Mater. 2017, 3, 1600195.
  20. X. Wu, R. Ge, P.‐A. Chen, H. Chou, Z. Zhang, Y. Zhang, S. Banerjee, M.‐H. Chiang, J. C. Lee, D. Akinwande, Adv. Mater. 2019, 31, 1806790.
  21. Y. Shen, W. Zheng, K. Zhu, Y. Xiao, C. Wen, Y. Liu, X. Jing, M. Lanza, Adv. Mater. 2021, 33, 2103656.
  22. J. Xie, S. Afshari, I. Sanchez Esqueda, npj 2D Mater. Appl. 2022, 6, 50.
  23. S. J. Yang, L. Liang, Y. Lee, Y. Gu, J. Fatheema, S. Kutagulla, D. Kim, M. Kim, S. Kim, D. Akinwande, ACS Nano 2024, 18, 3313.
  24. R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, Y. Zhang, J. C. Lee, D. Akinwande, Nano Lett. 2018, 18, 434.
  25. R. Ge, X. Wu, L. Liang, S. M. Hus, Y. Gu, E. Okogbue, H. Chou, J. Shi, Y. Zhang, S. K. Banerjee, Y. Jung, J. C. Lee, D. Akinwande, Adv. Mater. 2021, 33, 2007792.
  26. X. Yan, Z. Zheng, V. K. Sangwan, J. H. Qian, X. Wang, S. E. Liu, K. Watanabe, T. Taniguchi, S.‐Y. Xu, P. Jarillo‐Herrero, Q. Ma, M. C. Hersam, Nature 2023, 624, 551.
  27. M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru‐Mirédin, R. Mazzarello, A. Sebastian, Nature Mater 2018, 17, 681.
  28. D. Kumar, H. Li, U. K. Das, A. M. Syed, N. El‐Atab, Adv. Mater. 2023, 35, 2300446.
  29. S. Ghomi, P. P. Tummala, R. Cecchini, C. S. Casari, A. Lamperti, C. Grazianetti, C. Martella, A. Molle, Mater. Sci. Semicond. Process. 2023, 168, 107838.
  30. C. Grazianetti, C. Martella, Materials 2021, 14, 4170.
  31. Y. Du, G. Qiu, Y. Wang, M. Si, X. Xu, W. Wu, P. D. Ye, Nano Lett. 2017, 17, 3965.
  32. Z. Zhu, X. Cai, S. Yi, J. Chen, Y. Dai, C. Niu, Z. Guo, M. Xie, F. Liu, J.‐H. Cho, Y. Jia, Z. Zhang, Phys. Rev. Lett. 2017, 119, 106101.
  33. X. Huang, J. Guan, Z. Lin, B. Liu, S. Xing, W. Wang, J. Guo, Nano Lett. 2017, 17, 4619.
  34. Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang, Y. Liu, Y. Du, W. A. Goddard, M. J. Kim, X. Xu, P. D. Ye, W. Wu, Nat. Electron. 2018, 1, 228.
  35. N. Hussain, M. Rafique, T. Anwar, M. Murtaza, J. Liu, F. Nosheen, K. Huang, Y. Huang, J. Lang, H. Wu, 2D Mater. 2019, 6, 045006.
  36. E. Bianco, R. Rao, M. Snure, T. Back, N. R. Glavin, M. E. McConney, P. M. Ajayan, E. Ringe, Nanoscale 2020, 12, 12613.
  37. D. K. Sang, B. Wen, S. Gao, Y. Zeng, F. Meng, Z. Guo, H. Zhang, Nanomaterials 2019, 9, 1075.
  38. Z. Shi, R. Cao, K. Khan, A. K. Tareen, X. Liu, W. Liang, Y. Zhang, C. Ma, Z. Guo, X. Luo, H. Zhang, Nanomicro Lett. 2020, 12, 99.
  39. D. Wang, A. Yang, T. Lan, C. Fan, J. Pan, Z. Liu, J. Chu, H. Yuan, X. Wang, M. Rong, N. Koratkar, J. Mater. Chem. A 2019, 7, 26326.
  40. H. Cui, K. Zheng, Z. Xie, J. Yu, X. Zhu, H. Ren, Z. Wang, F. Zhang, X. Li, L.‐Q. Tao, H. Zhang, X. Chen, ACS Appl. Mater. Interfaces 2020, 12, 47704.
  41. C. Zhao, C. Tan, D.‐H. Lien, X. Song, M. Amani, M. Hettick, H. Y. Y. Nyein, Z. Yuan, L. Li, M. C. Scott, A. Javey, Nat. Nanotechnol. 2020, 15, 53.
  42. T. Kim, C. H. Choi, P. Byeon, M. Lee, A. Song, K.‐B. Chung, S. Han, S.‐Y. Chung, K.‐S. Park, J. K. Jeong, npj 2D Mater. Appl. 2022, 6, 4.
  43. A. Chen, S. Ye, Z. Wang, Y. Han, J. Cai, J. Li, Patterns 2023, 4, 100722.
  44. Z. Zhang, X. Ji, J. Shi, X. Zhou, S. Zhang, Y. Hou, Y. Qi, Q. Fang, Q. Ji, Y. Zhang, M. Hong, P. Yang, X. Liu, Q. Zhang, L. Liao, C. Jin, Z. Liu, Y. Zhang, ACS Nano 2017, 11, 4328.
  45. R. Ge, X. Wu, M. Kim, J. C. Lee, D. Akinwande in Emerging 2D Materials and Devices for the Internet of Things (Eds.: L. Tao, D. Akinwande), 2020, Elsevier, Amsterdam, The Netherlands.
  46. S. Ghomi, A. Lamperti, M. Alia, C. S. Casari, C. Grazianetti, A. Molle, C. Martella, Inorganics 2024, 12, 33.
  47. X. Zhao, J. Shi, Q. Yin, Z. Dong, Y. Zhang, L. Kang, Q. Yu, C. Chen, J. Li, X. Liu, K. Zhang, iScience 2022, 25, 103594.
  48. A. C. Ferrari, D. M. Basko, Nature Nanotech 2013, 8, 235.
  49. J. T. Mlack, P. M. Das, G. Danda, Y.‐C. Chou, C. H. Naylor, Z. Lin, N. P. López, T. Zhang, M. Terrones, A. T. C. Johnson, M. Drndić, Sci. Rep. 2017, 7, 43037.
  50. J. Shen, S. Jia, N. Shi, Q. Ge, T. Gotoh, S. Lv, Q. Liu, R. Dronskowski, S. R. Elliott, Z. Song, M. Zhu, Science 2021, 374, 1390.
  51. S. M. Hus, R. Ge, P.‐A. Chen, L. Liang, G. E. Donnelly, W. Ko, F. Huang, M.‐H. Chiang, A.‐P. Li, D. Akinwande, Nat. Nanotechnol. 16, 58.
  52. R. F. Egerton, Rep. Prog. Phys. 2008, 72, 016502.

Grants

  1. ERC PoC N. 101069262 "XMem"/H2020 European Research Council
  2. CoGN.772261"XFab"./H2020 European Research Council

Word Cloud

Created with Highcharts 10.0.0resistiveswitchingtellurium2DmaterialsnanoscaledbehaviorconductivememristivegoldneuromorphiccomputingatomicdeviceVTDsubstratematerialenergyTwo-dimensionalpromisingin-memorythicknesssubstantiallyimproveenergeticbudgetcircuitsHowevermanystrugglecomplexgrowthmethodslimitedscalabilityexhibitsstrikingcharacteristicssimplicitychemistrystructuresynthesismakingsuitablevariousapplicationsstudyreportsfirstmemristordesignbasedsynthesizedvaportransportdepositiontemperaturelow100 °Cfullycompatibleback-end-of-lineprocessingnanosheetsstudiedforcemicroscopyprovidingvaluableinsightsfunctionalitysupportedmicroscalemeasurementsSelectingenhancestellurium intermsreducedvaluessetvoltageconsumptionadditionformationpathsleadingdrivengold-telluriuminterfacereconfigurationprocessrevealedelectronlossspectroscopyanalysisfindingsrevealpotentialversatilescalableunderscoreinfluentialroleelectrodesenhancingperformanceNon-VolatileResistiveSwitchingNanoscaledElementalTelluriumVaporTransportDepositionGoldAFMmemristorstellurene

Similar Articles

Cited By